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ABSTRACT

Background. A core part of cognitive therapy for low mood is learning to identify and challenge
negative beliefs. However, it is currently unclear whether improved ability to recognise such
beliefs, and the biased interpretations of events which may maintain them, is a mechanism of
symptom change during treatment.

Methods. We investigated the effects of completing a learning task (training to identify and
select self-enhancing interpretations of events) and a brief cognitive restructuring intervention
(how exploring alternative explanations of events may result in improved mood) on causal at-
tribution tendencies. Studies were conducted online using randomized-controlled experimental
designs (N=200 & N=164), and data were analysed using hierarchical Bayesian models.

Results. We found that both learning training and the restructuring intervention decreased
tendencies to make unhelpful attributions and increased tendencies to make self-enhancing at-
tributions. Across two studies, changes in attribution tendencies were associated with higher
learning rates during learning training, an effect specific to learning about different kinds of
event attribution. Contrary to expectation, we found no evidence that faster learning was asso-
ciated specifically to changes in attribution tendencies following cognitive restructuring. Since
participants with higher learning rate estimates also provided explicit ratings and free-text de-
scriptions of event causes which were closer to the ground truth, we interpret this as represent-
ing a greater benefit of learning training in individuals who were better able to understand the
task state space.

Conclusions. We suggest that personalized training, in conjunction with feedback based on in-
terpretable computational model output, may provide a useful form of augmentation or learning-
support tool during therapy.
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INTRODUCTION

A core aspect of cognitive therapy for low mood is learning to identify negative beliefs, and
exploring alternative explanations for events which challenge these beliefs (‘cognitive restruc-
turing’) (1, 2). However, there is currently little definitive evidence as to whether learning
to identify negative beliefs and application of restructuring skills are key drivers of symptom
change during psychological therapy for low mood (3, 4). Demonstrating this using data
from traditional randomized-controlled trials involving psychotherapy treatment programs (e.g.,
cognitive-behavioural therapy (CBT)) is challenging, given the multiple types of interventions
delivered in each program coupled with a lack of the fine-grained resolution needed to infer tem-
poral dependencies between changes in beliefs and symptoms (3, 5). There is some evidence to
suggest that greater self-reported frequency and/or skill in applying cognitive strategies is asso-
ciated with greater overall symptom reduction following C(B)T (6–11). That said, the degree of
conceptual overlap between self-report measures of cognitive skills and symptoms themselves
(the ‘jangle’ fallacy) makes disentangling changes in the former from overall treatment response
or residual symptom burden considerably more difficult (6, 12).

Behavioural measures of cognitive processes may be one way to help solve this problem, since
they are less close to the target construct of interest: symptom change (13–15). Combin-
ing cognitive-behavioural measures with randomized allocation of therapy-like interventions
in high-throughput testing can provide an efficient way to test whether specific components
of psychological treatments may causally impact specific cognitive processes, prior to extend-
ing testing to resource-intensive clinical settings (16, 17). Here, we use this approach to test
whether a behavioural measure of attribution tendencies (how people tend to reason about the
causes underlying events) is affected by (a) training in learning to identify different kinds of
causal attributions (a learning task intervention) and (b) practice in identifying and challenging
unhelpful attributions of events in their own lives (a brief cognitive restructuring intervention).
Cognitive therapy can be considered a process of learning (13), and it has been suggested that
individuals with greater capacity for learning during treatment show greater benefits (18). On
this basis, we initially hypothesized that individual differences in learning task performance
would be related to individual differences in response to a brief cognitive restructuring inter-
vention.

Instead, across two studies, we found evidence that both the learning task training and the brief
cognitive restructuring intervention affected causal attribution tendencies, shifting them away
from unhelpful or ‘depressogenic’ patterns (e.g., lower tendency to attribute negative events
to self-related or internal causes) and towards self-enhancing styles (e.g., higher tendency to
attribute positive events to internal causes). In both studies, greater shifts in attribution tenden-
cies were associated with higher learning rate estimates on the learning training task. Since we
found no association between attribution change and learning rates from a matched control task
(which did not concern causal attributions), we interpret this as being due to greater ability to
discriminate between different kinds of attributions, or a better understanding of the learning
task state space. Contrary to expectations, there was no evidence that individuals with faster
learning rates showed greater responses to the cognitive restructuring intervention specifically.
We discuss these findings with reference to recent proposals for augmenting psychological treat-
ments with strategies aimed at boosting learning and memory of treatment content, and for
whom this might be most effective for (19, 20).
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RESULTS

We report results of two cross-sectional studies with similar overall designs (Figure 1). In both
studies, participants completed a task-based measure of causal attribution tendencies, before
and after two types of intervention: a learning training (or control learning) task, and a brief
cognitive restructuring (or control) intervention.

Figure 1: Overview of study designs and measures. A Experimental designs and randomisation con-
ditions for each study. In both studies, a cognitive-behavioural measure of causal attribution tendencies
(the causal attribution task), was completed pre- and post-completion of two types of intervention. In
study 1, all participants completed the learning training task and were randomly allocated to complete
either brief cognitive restructuring or a control intervention. In study 2, participants were randomly as-
signed to complete either learning training or a control learning task, followed by either brief cognitive
restructuring or a control intervention. All studies took place online, over a single experimental session
(around one hour in length). B Representative screenshots of different study measures. The causal attri-
bution task asks participants to choose between four different potential explanations of events, if such an
event happened to them. The learning training task uses a third person framing and requires participants
to learn the kinds of explanations thought to be correct for a hypothetical person in a particular mood
state, given explicit feedback. The control learning task, identical in structure, requires participants to
learn about the properties of objects, rather than causal explanations. The brief cognitive restructuring
(and control) interventions both took the form of a series of interactive worksheets, which asked partic-
ipants to learn about a particular therapy model and then apply it to recent events from their own lives.
Further screenshots and demonstrations of the tasks and interventions are available on the study GitHub
repository.
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PARTICIPANTS

Participants for both studies were recruited from an online research participation platform (Pro-
lific (21)) and are described in Table 1.

In both studies, samples showed evidence of self-selection for mental health research, given
40% reporting of previous treatment for a mental health problem, and mild-to-moderate aver-
age endorsement of current low mood and social anxiety symptoms (proportion of participants
above cut-off score for clinically-significant depressed mood according to the PHQ-9 = 32% &
27%; proportion of participants with significant social anxiety according to the miniSPIN = 48%
& 46%; Figure S1).

SEPARATE EFFECTS OF LEARNING TRAINING AND BRIEF COGNITIVE RESTRUCTURING ON
CAUSAL ATTRIBUTION TENDENCIES

We first examined whether there was evidence for separate effects of completing the learning
training task and brief cognitive restructuring intervention on attribution tendencies, as mea-
sured on the causal attribution task. Specifically, we used a hierarchical Bayesian modelling
approach to test whether there was evidence for additional group-level effects of having been
randomized to learning training vs. control learning task conditions, and cognitive restructuring
vs. control intervention conditions (see Methods).

In study 1 all participants completed the learning training task, so here we were only able to
examine group-level effects of cognitive restructuring vs. control intervention conditions. As
reported previously, we found that completion of the brief cognitive restructuring intervention
resulted in decreased tendency to attribute negative events to internal causes (posterior estimate
= -0.48 [90% credible interval (CrI) = (-0.70, -0.26)]), and an increased tendency to attribute
positive events to general or global causes (posterior estimate=0.50 [90% CrI = (0.11, 0.90)])
(Figure 2A-B; Table S1). Of interest, the group means for each parameter showed some evidence
of shifts between time-points, with participants showing slightly higher mean endorsement of
internal and global attributions of positive events at the second measurement (Figure 2). These
group-level shifts could represent common effects of completing the cognitive restructuring and
control interventions on attribution tendency. However, as the control intervention made no
reference to how interpretations of events might affect mood, or reappraisal strategies, this is
unlikely. An alternative explanation is that these effects are due to completion of the learning
training task by all study participants, since this directly involves learning to recognise different
kinds of attributions.

We tested this idea directly in study 2. Importantly, this study included a control learning task,
as well as cognitive restructuring and control intervention conditions. To formally test whether
completion of the learning task resulted in group-level changes in attribution tendencies, we
augmented the analysis model for these data such that post-intervention (time 2) attribution
tendencies could be influenced by learning training condition, as well as restructuring interven-
tion condition (see Methods).

Model comparison revealed that the model with additional effects for learning task condition
had marginally better predictive accuracy for causal attribution task data than the model with
restructuring intervention condition alone (difference in expected log pointwise predictive den-
sity (ELPD) for left-out causal attribution task data, ELPDdiff = −0.4, but of less than 5x than
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Study 1 Study 2

N 200 164

Age (years)
Mean (SD)
Range

37.2 (10.5)
19-63

36.9 (10.5)
20-65

Gender
Woman
Man
Non-binary or other

110 (55%)
86 (43%)
4 (2%)

75 (46%)
86 (52%)
3 (2%)

Race / ethnicity

White
Asian
Black
Mixed
Other

165 (83%)
14 (7%)
5 (3%)
8 (4%)
8 (4%)

125 (78%)
13 (8%)
12 (7%)
10 (6%)
3 (2%)

Employment status
Employed
Unemployed
Not seeking

147 (74%)
19 (10%)
33 (17%)

127 (77%)
13 (8%)
24 (15%)

Financial status
Doing okay
Just about getting by
Struggling

95 (48%)
74 (37%)
30 (15%)

85 (52%)
61 (37%)
18 (11%)

Housing status
Homeowner
Tenant
Other

90 (45%)
86 (43%)
23 (12%)

87 (53%)
49 (30%)
28 (17%)

Neurodivergence
Yes
No
Prefer not to say

25 (13%)
167 (84%)
8 (4%)

25 (15%)
135 (82%)
4 (2%)

Previous treatment for
a mental health problem

Yes
No
Prefer not to say

89 (45%)
103 (52%)
8 (4%)

55 (34%)
105 (64%)
4 (2%)

If yes, type of treatment
(all that apply)

Talking therapy
Medication
Self-guided
Other

62 (31%)
62 (31%)
39 (20%)
5 (3%)

36 (22%)
37 (23%)
27 (17%)
4 (2%)

PHQ-9 (/27) Mean (SD) 7.3 (6.2) 6.3 (5.8)
DAS-SF (/36) Mean (SD) 19.2 (4.6) 18.6 (4.8)
miniSPIN (/12) Mean (SD) 5.8 (3.6) 5.5 (3.4)

Table 1: Self-reported demographic and clinical data for all study participants. Self-
reported race/ethnicity was based on information provided by Prolific. All other information
was recorded via our custom demographic questionnaire (see Methods). Employment status
categories were employed (including full-time and part-time employment), unemployed (job
seekers and those unemployed owing to ill health), and not seeking employment (stay-at-
home parents, students, and retirees). Housing status categories were homeowner (including
those with a mortgage), tenant, and other (living with family or friends, homeless, or living
in a hostel). Neurodivergence was explained as ‘a term for when someone processes or learns
information in a different way to that which is considered “typical”: common examples include
autism and attention-deficit/hyperactivity disorder (ADHD)’. Categories for previous mental
health treatment were talking therapy (including CBT), medication, self-guided (e.g., work-
books or apps), or other. The 9-item patient health questionnaire (PHQ-9) assesses depressed
mood; the short-form dysfunctional attitudes scale (DAS-SF) assesses dysfunctional beliefs;
and the 3-item social phobia inventory (miniSPIN) assesses social anxiety.
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the standard error (SE) of the estimate: SEdiff = 6.8), suggesting that this indeed had an addi-
tional impact on changes in attribution tendencies.

Figure 2: Independent effects of learning training and brief cognitive restructuring on causal attri-
bution. A Posterior mean (and standard deviation (SD)) parameter estimates for the causal attribution
task for each participant at time 1 (pre-intervention) and time 2 (post-intervention) by randomisation
group, in study 1 participants (N=200). Parameter estimates plotted here represent the probability of
endorsing a given kind of attribution for positive and negative events, which are governed by the latent
trait parameters (θ). Lines of best fit for mean time 1 vs. time 2 estimates for individuals in each group
are plotted for illustration purposes. B Posterior parameter estimates for group means (over all partici-
pants/randomisation conditions) for each parameter at each time point, and the additional effect of the
cognitive restructuring intervention at time 2, in study 1 participants, where P denotes probability. Thick
inner lines represent 50% and thin outer lines represent 90% quantile-based CrIs (i.e., 90% of the prob-
ability density contained within the interval). For visualisation purposes, intervention effects (bold text)
have been scaled by the square root of the mean posterior variance estimates for parameter values at time
2, making them roughly equivalent to standardised mean differences (SMDs). C The same plot as (A),
for study 2 participants (N=164). D The same plot as (C), for study 2 participants; P denotes probability.
Here, group-level effects on time 2 parameter estimated were modelled separately for participants who
completed the restructuring vs. control intervention, and learning vs. control learning training.

Inspection of changes in individual parameter estimates between time 1 (pre-intervention) and
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time 2 (post-intervention) revealed that participants who completed both the learning training
task and cognitive restructuring intervention showed the greatest shifts away from depresso-
genic (internal, global) attributions of negative events, and towards self-enhancing attributions
of positive events (Figure 2C). Posterior parameter estimates for group-level effects revealed
that, when accounting for learning task condition, the restructuring intervention both decreased
tendency to attribute negative events to internal causes (posterior estimate = -0.32 [90% CrI =
(-0.57, -0.06)]), and increased tendency to attribute positive events to internal causes (posterior
estimate = 0.65 [90% CrI = (0.19, 1.11)]) (Figure 2D, Table S2). There was also evidence for
separate group-level effects of completion of the learning training vs control learning task on
attribution tendencies. Specifically, completion of the learning training task further decreased
internal attribution of negative events, as well as increased internal and global attribution of
positive events (posterior estimates = -0.51 [90% CrI = (-0.77, -0.26)], 1.24 [90% CrI = (0.77,
1.72)], 1.03 [90% CrI = (0.58, 1.47)]; Table S2).

Therefore, at the group level, both completion of the restructuring intervention and completion
of learning training task impacted causal attribution tendencies for everyday events—with both
intervention components resulting in a decreased tendency to choose unhelpful and increased
tendency to choose self-enhancing interpretations.

LEARNING RATES FROM THE LEARNING TRAINING TASK AND CHANGES IN SELF-ENHANCING
ATTRIBUTIONS

If learning is critical to the effects described above, we might reasonably expect that the effects
of the learning task intervention to depend on individual differences in learning performance.
We next explored whether model-based metrics of learning were related to changes in causal
attribution tendencies.

Learning rates were estimated from learning training task data using a simple Rescorla-Wagner
model (see Methods). Full information on model derivation via model comparison, chosen
model performance, and simulation-based calibration analysis (including recovery of individual
model parameters) can be found in the Methods and Supplementary Results.

Given we observed minimal variation in learning about negative events in our samples (Fig-
ure S2), we focused our analysis on learning estimates for positive events. Specifically, positive
learning rates from the learning task were then compared to changes in self-enhancing attribu-
tions (internal and global interpretations of positive events) on the causal attribution task.

As a first-pass analysis, we examined relationships between point estimates (posterior parameter
means) from separately modelled learning and causal attribution task data. We then carried out
a formal test of association by analysing learning and causal attribution task data together in a
joint hierarchical Bayesian model. This approach allows for the direction estimation of associa-
tions between relevant parameters in the form of posterior regression weights (see Methods).

Associations between separately modelled learning and attribution task data. We observed
associations between positive learning rates (αpos) and changes in internal and global attribu-
tions of positive events (study 1: Rαpos,∆internal = 0.24, p < 0.001, Rαpos,∆global = 0.10, p = 0.15,
study 2: Rαpos,∆internal = 0.24, p < 0.001, Rαpos,∆global = 0.20, p < 0.001; all correlations
weighted by the posterior precision of αpos estimates; Figure 3A,D; for pre- and post-intervention
parameter estimates see Figure S3). These relationships were not evident for learning rates de-
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rived from the control learning task (Rs = 0.14 & 0.10; Figure 3D).

There was no convincing evidence that the strength of these correlations differed between par-
ticipants who received the cognitive restructuring compared to control interventions (for change
in internal-positive attribution tendencies, study 1: Rs = 0.27 & 0.21, study 2: Rs = 0.12 & 0.22;
for change in global-positive attribution tendencies, study 1: Rs = 0.20 & 0.04, study 2:
Rs = 0.25 & 0.18, all p > 0.9, Fisher’s R-to-Z tests).

Joint hierarchical Bayesian modelling of learning and attribution task data.

Results of the first joint models provided strong evidence of positive relationships between pos-
itive learning rate (αpos) estimates and changes in internal and global attributions of positive
events, across intervention conditions, in study 1 participants (βLEARN internal-positive = 0.56
[90% CrI = (0.34, 0.88)], βLEARN global-positive = 0.46 [90% CrI = (0.27, 0.72)], Figure 3B,
Table S3). These effects were replicated in study 2 data (βLEARN internal-positive = 0.29 [90%
CrI = (0.17, 0.45)], βLEARN global-positive = 0.26 [90% CrI = (0.13, 0.42)]) - but were not
evident for learning rates estimated from the control learning task (βCONTROL internal-positive
= 0.01 [90% CrI = (-0.02, 0.03)], βCONTROL global-positive = 0.01 [90% CrI = (-0.01, 0.03)],
Figure 3E, Table S4). This suggests that associations between speed of learning and subsequent
change in self-enhancing attribution tendencies were specific to learning training in the domain
of causal attributions.

Results of the second joint models provided some weak evidence for an additional influence
of αpos estimates on change in internal-positive attributions in participants who completed the
restructuring intervention in study 1 (βLEARN+CR internal-positive = 0.23 [90% CrI = (-0.002,
0.42)]), but there was no evidence for this effect in study 2 (βLEARN+CR internal-positive =
-0.07 [90% CrI = (-0.23, 0.08)]). In neither study was there any convincing evidence for an
additional influence of αpos estimates on change in global-positive attributions in restructuring
group participants (study 1: βLEARN+CR global-positive = 0.10 [90% CrI = (-0.06, 0.28)],Fig-
ure 3C, Table S5, study 2: βLEARN+CR global-positive = 0.09 [90% CrI = (-0.04, 0.24)], Fig-
ure 3F, Table S6). Therefore we found no strong evidence in favour of a selective interaction
between faster learning on the learning training task and response to the cognitive restructuring
intervention.

Importantly, when the likelihood of the attribution task data was compared between the original
analysis model and joint models, both joint models had superior predictive accuracy in left-out
data (Table S7). This suggests that overall estimates of learning rates from the learning task were
providing relevant information for inferring post-intervention causal attribution task parameter
values.

LEARNING RATES FROM LEARNING TASK DATA REFLECT UNDERSTANDING OF THE TASK
STATE-SPACE

We next explored relationships between learning rates estimates and other learning task data.
Specifically, after each learning task scenario, participants were asked to provide explicit ratings
of the kinds of causes that were thought to be ‘correct’, along internal-external and global-
specific dimensions, and also provided free-text descriptions of each cause. Full analysis of
learning task data (choice accuracy, response times, explicit-cause ratings and free-text cause
descriptions) is available in the Supplementary Results.
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Figure 3: Changes in self-enhancing attributions were positively associated with learning rate esti-
mates from the learning training task, but this effect was not greater in participants who completed
cognitive restructuring. A Correlations between posterior mean estimates for positive learning rate from
the learning training task (αpos) and changes in mean values of parameters governing tendency to se-
lect internal and global attributions of positive events in study 1 participants. Point weights represent
the estimated posterior precision of αpos (i.e., 1/SD). B Posterior estimates of group-level effects from
joint models of learning and causal attribution task data. βLEARN, posterior estimates for weight of αpos

estimates on change in internal and global attributions of positive events. For visualization purposes, β
estimates have been scaled by the ratio of predictor (i.e., αpos) and outcome (i.e., mean posterior param-
eter) SDs, making them roughly equivalent to standardized regression coefficients. Black lines represent
50 & 90% posterior CrIs, and shading represents the posterior probability density. C The same plot as B,
for a joint model with additional β weights for participants who completed brief cognitive restructuring
in addition to learning training (βLEARN+CR). D The same plot as A, for study 2 participants. E The same
plot as B, for study 2 participants. βCONTROL, posterior estimates for weight of control learning task
learning rate estimates on change in attribution tendencies. F The same plot as E, for a joint model with
additional weights for participants who completed brief cognitive restructuring in addition to learning
training.
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Relationships between positive learning rates and explicit cause ratings. Posterior mean
estimates of learning rates for positive events (αpos) were positively associated with the explicit
ratings of ‘correct’ causes for each task scenario. In other words, participants who learned
faster to select internal-global attributions of positive events during the task were also able
to better identify that correct causes were internal (self-related) and global (general), using
explicit rating scales (study 1: Rs = 0.2− 0.35, p < 0.005, study 2: Rs = 0.20− 0.33, p ≤ 0.033,
Figure S6). These relationships persisted in linear mixed-effects models controlling for scenario
number and mean posterior inverse temperature (β) parameter values, weighted by posterior
precision of αpos estimates (internal-external cause ratings: study 1: F1,238 = 17.2, study 2:
F1, 114.5 = 9.5, p < 0.005; global-specific cause ratings: study 1: F1,235 = 13.2; p < 0.001, study
2: F1, 112.7 = 4.1, p < 0.05).

Relationships between positive learning rates and free-text cause description label prob-
abilities. In study 1, there was strong evidence that posterior mean estimates of αpos were
positively correlated with classifier label probabilities for positive events in each scenario, along
the internal-external dimension ([events were caused by] “myself”, Rs = 0.24− 0.28, p < 0.001;
[events were caused by] “other people”, Rs = 0.2 − 0.32, p < 0.001; Figure S7). These effects
persisted in linear mixed-effect models controlling for scenario number and posterior mean
inverse temperature (β) parameter values, weighted by posterior precision of αpos estimates
(F1,239 = 12.1, p < 0.001;F1,267 = 5.6, p < 0.02). In study 2, this association was only marginally
evident ([events were caused by] “myself”, Rs = 0.17 − 0.22, p < 0.07; [events were caused
by] “other people”, Rs = 0.14 − 0.25, p < 0.10), and did not survive in the controlled model
(F1,111 = 2.13, p = 0.15, F1,140 = 2.59, p = 0.11). No relationships were evident between learn-
ing rates and classifier label probabilities for the free-text descriptions of positive events in the
global-specific dimension in either sample, likely as this dimension was represented much more
noisily in classifier output (see Supplementary Results).

In summary, in a reinforced setting, participants who learned more quickly to select self-enhancing
attributions were also able to better describe the types of causes reinforced as correct during the
task. This suggests that participants with higher learning rate estimates (αpos) may have had a
greater understanding of the ground truth dimensions along which response options (potential
causal explanations) varied, allowing them to more quickly choose the ‘correct’ responses for a
given scenario.
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DISCUSSION

Theories of cognitive restructuring suggest it is a process based on learning (13). Individual
differences in learning and memory of therapy content may be a moderator of symptom change
during treatment (18, 19). Inspired by recent demonstrations that clinically relevant inference
processes can be reliably measured using computerised learning tasks (22, 23), we sought to
explore whether ability to recognise and learn about different attributions during a learning
task was related to the subsequent changes in causal attribution tendencies, in the absence or
presence of a brief cognitive restructuring intervention.

Contrary to our expectations, we found little evidence that individual differences in learning
were specifically related to change in attribution tendencies following the restructuring inter-
vention. Instead, we found robust evidence to support the idea that completion of the learning
task had additive effects to completion of either intervention condition, in particular in boosting
shifts towards self-enhancing (internal and global) attributions of positive events. Across stud-
ies, the magnitude of these effects was related to how quickly participants updated their choices
according to reinforcement of an (implicit) internal-global response dimension on the learning
task. Participants with faster learning rate estimates also showed greater ability to explicitly
label correct responses along these ground truth dimensions, suggesting better overall under-
standing of the task state-space. Together, this suggests that individuals with a more intuitive
understanding of these dimensions may be most likely to respond to this kind of training.

Several previous studies which have attempted to shift appraisals of everyday events using on-
line training. For example, in non-clinically depressed participants, a single session of app-based
reappraisal training was found to result in maladaptive response biases to ambiguous imagined
scenarios in individuals given negative training, and adaptive biases in individuals given posi-
tive training (24). Similarly, three weeks of online training was found to increase self-reported
reappraisal skill use—with participants who reported low levels of reappraisal use at baseline
benefiting more in terms of improvement in depression symptoms (25). A recent meta-analysis
also found evidence that cognitive bias training (where participants are typically presented with
ambiguous everyday scenarios and trained to resolve them in favour of neutral or positive in-
terpretations) reduced symptoms of anxiety and depression compared to some control condi-
tions (26).

A novel aspect of the learning task described here is the use of a third-person perspective, along-
side explicit reinforcement. It is possible that this is an effective strategy in helping participants
learn to recognise different kinds of causal attribution tendencies, since distancing techniques
are often employed during cognitive restructuring (27) and can alter learning (16). One ad-
vantage of tasks that can measure attribution biases along multiple dimensions—in conjunction
with interpretable computational models—is that this information can be fed back to users over
time. Future studies could explore the impact of this kind of informed training on learning
speed, self-relevant attribution, and symptom change, as a form of acute psychological treat-
ment augmentation (20).

The major limitations of the studies presented here are that participation was not restricted
to individuals currently experiencing clinically-significant levels of psychological symptoms, and
that the brief restructuring intervention used here was not a real-world (i.e., clinically validated)
psychological treatment component. It will be important to test in future work whether findings
extend to these settings. However, measuring the impact of isolated therapy components on
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their proposed cognitive mechanisms in experimental settings has been proposed to be a useful
first step in understanding how and when psychotherapeutic techniques result in meaningful
clinical improvement (28, 29).

There are also some methodological limitations of our studies. First, for consistency with our
previous work (17), we interpret 90% CrIs excluding zero as indicative of a meaningful contri-
bution of a given parameter to the behavioural dimension of interest. This may be more prone to
false positives than wider intervals, though we note 95% CrIs also excluded zero for all single-
signed credible intervals we report in the text (see Supplementary Tables). More pertinently,
although inference procedures for the learning task model were well-calibrated, we do not pro-
vide empirical data regarding the test-retest reliability of these measures. This limits our ability
to infer reliable individual differences in learning between participants. We were unable to in-
vestigate individual differences in learning about negative events on the learning training task
(a dimension that may be particularly relevant for depression), given our sample was mostly at
ceiling for this response dimension. It is also important to note that our single-session experi-
mental design, whilst supporting fast and high-throughput measurement in a relevant sample of
individuals, may result in increased likelihood of motivational biases or demand effects influenc-
ing our primary dependent measures (i.e., participants updating their responses on the second
attribution task in line with previously reinforced ‘correct’ responses on the learning training
task, or the perceived purpose of the study). It will therefore be vital to determine in future
work whether effects observed here are evident over longer timescales, and if they generalise to
interpretations of the causes of events in users’ own lives.

A fundamental aim of this kind of research is to help address barriers to the uptake and use
of existing psychological interventions—in particular, remotely-delivered treatments where the
potential for impact is large, but where initializing engagement and high attrition rates are acute
problems (30). One factor that has been identified by users of digital mental health products is
a “need... to experience a sense of ‘self’ in the treatment” (31). It is possible that using cognitive
tasks with interpretable model-based output, and, critically, feeding this information back to
users can help address this need. The utility of these approaches needs to be established in em-
pirical studies, ideally with participation from all relevant stakeholders. Promisingly, e-mental
health applications offer the potential to test these questions directly and at scale in an agile
way, which may help substantially reduce the time between development and implementation
of new treatment strategies (32).
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METHODS

DATA AND CODE AVAILABILITY STATEMENT

Code for implementing all tasks and analyses described here, alongside anonymized study data
is available on the study GitHub repository.

ETHICAL APPROVAL

All participants gave written informed consent and all studies were approved by the UCL Re-
search Ethics Committee (project ID 21029/001).

PARTICIPANTS

Participants were recruited from an online research participation platform (Prolific (21)), and
required to be resident in the UK, 18-65 years old, and fluent in English. Power analyses for
both studies are available in the Supplementary Methods.

STUDY DESIGN

The design of each study is described in Figure 1A. Upon recruitment to each study, participants
were assigned to a study arm using a random number generation-based procedure. All studies
took place online over a single session, of approximately one hour.

MEASURES

Causal attribution task

A full description of the causal attribution task, including task development, design optimiza-
tion, and measurement properties can be found in Norbury et al. (2024) (17). Of note, output
parameters from the associated analysis model have excellent identifiability and test-retest reli-
ability, and have previously been found to be associated with self-reported negative self-beliefs
and current depression symptom severity.

Briefly, participants were instructed to imagine themselves in various everyday situations. For
each situation, they were asked to picture the situation described as clearly as they could (“as
if the events were happening to them right now”), and then choose which of several possible
explanations listed below they thought most likely, if it had happened to them.

In each of two equivalent versions of the task (one pre- and one post-intervention), participants
were presented with 32 event scenarios (16 positive and 16 negative events, randomly inter-
leaved), divided into two blocks. Event scenarios differed across the two task versions. For each
event, participants were asked to choose between four response options that varied orthogo-
nally in terms of internal-external and global-specific explanation types, derived from examples
provided in Abramson et al. (1978) (33).

Learning training task
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The learning training task was developed as a measure of how easily participants can learn to
select different kinds of causal attributions, in a reinforced setting. In contrast to the causal
attribution task, the learning training task used a third person framing. Specifically, participants
were told that they would be learning about how a hypothetical person in a particular mood
might reason about the causes behind events. For each scenario, it was their job to learn to
select the correct kinds of explanations for that person in that mood, via trial and error. Par-
ticipants were provided with explicit instructions stressing the differences between the learning
and attribution tasks, and required to pass a multiple-choice post-instructions quiz before pro-
ceeding (for full details, see screenshots available on the study GitHub repository). After each
scenario, participants were asked to provide ratings and brief free-text description of the kinds
of causes that were correct in that scenario (see Supplementary Methods).

Control learning task

The control learning task was exactly matched in trial type and reinforcement structure to the
causal learning task. Participants were told that they would see a series of different coloured
and shaped baskets, below which would be two different objects that could potentially belong
to them. For each scenario, it was their job to learn which kinds of objects belonged in each
basket, by trial and error (see Supplementary Methods). Again, participants provided explicit
ratings and free-text descriptions of objects that belonged in each type of basket at the end of
each scenario. All other aspects of task design were identical to the learning training task.

Brief cognitive restructuring and control interventions

The brief cognitive restructuring and control interventions were in the form of a series of in-
teractive worksheets, requiring participants to select answers from multiple potential options
during worked examples, and provide input based on recent positive and negative experiences
from their own lives.

The cognitive restructuring intervention was based on cognitive therapy materials (1) and con-
sisted of information about a cognitive model of mood, interactive exercises identifying helpful
and unhelpful attributions of the same events, inviting people to practise generating alternative
explanations for recent events in their own lives, and a summary comprehension quiz. The con-
trol intervention was based on materials from emotion-focused therapy (34), and was closely
matched in terms of length, interactivity, and self-relevant exercise content—although, impor-
tantly, it did not contain reference to cognitive interpretations influencing feelings or include
reappraisal activities. The full content of each intervention is available on the study GitHub
repository.

Self-reported demographic and clinical information

At the end of each study, participants completed a set of brief self-report measures to provide
information about their recent experience of mental health symptoms, and other sociodemo-
graphic information (see Supplementary Methods).

ANALYSIS

All analyses were carried out in R version 4.1.2 (R Core Team, 2021).

Initial statistical analysis of learning task data
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Preliminary statistical analysis of learning task data was via mixed-effects linear regression mod-
els, as implemented in lme4 (see Supplementary Methods).

Classification of learning task free-text data

To measure how well participants were able to describe the ground-truth causes in each scenario
in their own words, free-text responses were passed to a zero-shot natural language process-
ing (NLP) classification pipeline (Facebook’s BART-MNLI-LARGE transformer model (35)), with
the non mutually-exclusive candidate labels [”myself”, ”other people”, ”in general”, ”specific
situations”]. Output probabilities for each candidate label were further analyzed as above.

Hierarchical Bayesian modelling

General methods. Model parameters were estimated using Markov chain Monte Carlo (MCMC)
sampling as implemented in Stan 2.21.0 (36), using RStan 2.21.3 (Stan Development Team,
2021). All models used generic weakly-informative priors (see Supplementary Methods). We
report quantile-based 90% CrIs for consistency with results reported in our previous work on
similar data (17), though the respective quantiles for 95% intervals can be found in the Supple-
mentary Tables.

Hierarchical Bayesian analysis of causal attribution task data

Modelling of causal attribution task data followed the approach previously described in Norbury
et al. (2024) (17), using an analysis model for which task design was previously optimised (see
Supplementary Methods). Group-level parameters described potential effects of allocation to
the restructuring intervention on individual-level parameter estimates at time 2, with priors for
these parameters centred on 0. For study 2, this model was augmented to include potential
effects of allocation to the learning training task condition.

Hierarchical Bayesian analysis of learning task data

For model-based analysis of learning task data, choices were collapsed to binary selection of
internal-global and non-internal-global responses, separately for positive and negative events,
to allow for repeat assessment of learning across the three task scenarios. Choice data were then
modelled using a series of simple reinforcement-learning models based on the Rescorla-Wagner
algorithm (see Supplementary Methods). Under this framework, values of each response op-
tion (internal-global and non-internal-global explanations) in each state (for a positively or
negatively valence event) are updated on each trial using a surprise term, which is simply the
difference between trial feedback (correct or incorrect) and the previously estimated value for
that option in that state, multiplied by a learning rate.

Associating separately modelled causal attribution and learning task data parameters

As simple first-pass check, we examined correlations between point estimates (posterior means)
of each parameter, weighted by the posterior precision (i.e., 1/SD) of the predictor variable
(αpos). This is not an optimal way to test for associations between different estimates, since it
neglects information about the individual precision of both parameter estimates.

Joint modelling of causal attribution and learning task data

To formally test for associations between parameters, we constructed a series of joint models
of causal attribution and learning task data (37, 38). For the first joint models, the causal
attribution task analysis model (Supplementary Methods) was extended such that individual
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estimates for positive learning rates from the learning task (αpos) were allowed to influence
relevant post-intervention (time 2) causal attribution task parameter estimates (ϕp,2) via the
inclusion of β weight parameters (βLEARN; see Hopkins et al. (2021) (23) and Haines et al.
(2020) (39)). These β weights can interpreted similarly as in a standard regression model, with
the group-level intervention effects (e.g., ϕCR for the cognitive restructuring (CR) intervention)
now representing the intercept.

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 = ϕµ,2 + ϕ̃p,2 +

{
ϕCR + αpos ∗ βLEARN if CR intervention + learning task,

αpos ∗ βLEARN if control intervention + learning task.

(1)

For study 2 data, the first joint model included separate β weights for participants who com-
pleted the learning training vs. control learning tasks (βLEARN, βCONTROL):

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 = ϕµ,2 + ϕ̃p,2 +


ϕCR + ϕLEARN + αpos ∗ βLEARN, if CR intervention + learning task

ϕLEARN + αpos ∗ βLEARN, if control intervention + learning task

ϕCR + αpos ∗ βCONTROL if CR intervention + control learning task

(2)

The second joint models added additional β weights for participants randomized to complete
the CR intervention (βLEARN+CR), to test for the presence of larger influences of learning rates
on pre-post changes in attribution in participants who received both learning training and brief
CR.

For study 1:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 = ϕµ,2 + ϕ̃p,2 +

{
ϕCR + αpos ∗ (βLEARN + βLEARN+CR) , if CR intervention + learning task

αpos ∗ βLEARN if control intervention + learning task

(3)

For study 2:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 = ϕµ,2 + ϕ̃p,2 +


ϕCR + ϕLEARN +

αpos ∗ (βLEARN + βLEARN+CR) , if CR intervention + learning task

ϕLEARN + αpos ∗ βLEARN, if control intervention + learning task

ϕCR + αpos ∗ βCONTROL if CR intervention + control learning task

(4)

For all joint models, the priors for β effects were centred on zero (e.g., βLEARN ∼ N(0, 1)).
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CrI Credible Interval
CR Cognitive Restructuring
DAS-SF Dysfunctional Attitudes Scale, Short-Form
ELPD Expected Log Pointwise Predictive Density
MCMC Markov Chain Monte Carlo
miniSPIN mini Social Phobia Inventory, 3-item
NLP Natural Language Processing
PHQ-9 Patient Health Questionnaire, 9-item
RT Reaction Time
SD Standard Deviation
SE Standard Error
SBC Simulation-Based Calibration
SMD Standardised Mean Difference
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51. O. Papaspiliopoulos, G. O. Roberts, M. Sköld, A General Framework for the Parametrization
of Hierarchical Models. Statistical Science 22, 59–73, DOI (2007).

20

https://doi.org/10.1037/0021-843X.87.1.49
https://doi.org/10.1037/14692-000
https://doi.org/10.48550/arXiv.1910.13461
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.jmp.2016.01.001
https://www.proquest.com/docview/2699743014/abstract/7C4C9B080E4947EFPQ/1
https://doi.org/10.1177/2167702620929636
https://doi.org/10.3758/bf03193146
https://github.com/DuncanLab/OMINDS
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
https://doi.org/10.1002/da.1055
https://doi.org/10.1037/1040-3590.19.2.199
https://doi.org/10.1016/j.cpr.2015.08.003
https://doi.org/10.2471/BLT.09.067231
https://doi.org/10.1001/jamapsychiatry.2022.0100
https://doi.org/10.1038/s41562-023-01640-7
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1007/S11222-016-9696-4
https://doi.org/10.1214/088342307000000014


REFERENCES REFERENCES

52. S. Talts, M. Betancourt, D. Simpson, A. Vehtari, A. Gelman, Validating Bayesian Inference
Algorithms with Simulation-Based Calibration, 2020, Preprint on arXiv.
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SUPPLEMENTARY METHODS

POWER ANALYSIS

Power analysis for study 1 was based on pilot data concerning the effects of brief cognitive
restructuring on proportionate choice of internal-negative attributions (see Norbury et al. (2024)
(17) for full details) and was conducted using G*Power 3.1 (40). We determined that we could
replicate an effect half the pilot data effect size (d = 0.48) in N=48 participants with 95% power
(repeated-measures ANOVA between-within interaction with 2 groups, 2 measures per group,
assuming 0.6 correlation across repeated-measures and α = 0.05). Given the relative ease of
online data collection, subsequent studies were super-powered to N=100 per sample. The data
analysed here are the combined initial discovery and replication samples from Norbury et al.
(2024) (17), yielding a final N of 200.

Power analysis for study 2 was based on the observed simple correlation between mean poste-
rior positive learning rates from the learning training task and change in internal attributions
of positive events in study 1 data (all participants R = 0.27). Analysis using G*Power 3.1 (40)
revealed that N of 111 would allow us to replicate an association of this size with 90% power
(point biserial model, one-tailed, α = 0.05). Given that only 2/3 of participants in the proposed
study design would complete the learning training task, the target N was set to 165 (approxi-
mately 55 participants per study arm).

LEARNING TRAINING TASK

Participants completed three blocks of twenty trials, which they were told represented three
different mood state scenarios. Each trial consisted of a description of an everyday event, with
event descriptions and different potential causal explanations drawn from the battery of items
tested during the development of the causal attribution task (but not included in the final causal
attribution task; see Norbury et al. (2024) (17)). Across each scenario, events were balanced
in terms of positive and negative valence, and whether they concerned interpersonal interac-
tions. Transition between each scenario was signalled by a message stating they were about to
encounter a new scenario (where the kinds of reasons thought to be correct may be different to
the previous scenario), and a change in screen background colour.

Since we were primarily interested in how quickly participants were able to learn to select self-
enhancing causal explanations of positive events and avoid unhelpful explanations of negative
events (the goal of cognitive restructuring), the ‘correct’ (reinforced) attributions for events in
each scenario were always internal-global explanations for positive events, and non internal-
global for negative events. Response options (potential causal explanations) are unique on each
trial, and opposite contingencies are required for positive and negative events, making the task
relatively hard. On the basis of pilot testing, it was determined that two response options per
trial and a deterministic reinforcement structure (i.e., 100% reinforcement of correct choices)
was required to make the task solvable for participants. Specifically, response options (left-right
randomized on every trial) were internal-global vs. internal-specific explanations for scenario 1,
internal-global vs. external-global explanations for scenario 2, and internal-global vs. external-
specific explanations for scenario 3 (see Figure S2a,c). The former explanations were always
correct for positive events, and the latter explanations always correct for negative events. On
each trial, after participants chose an option, their choice was highlighted, visual feedback given
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as to whether that choice was correct or not, and the correct response option highlighted in
green text.

Given that solving the task requires understanding that response options on each trial can vary
according to internal-external and global-specific dimensions, we sought to orient all partici-
pants to these aspects of the task state-space at the start of the task. Specifically, before starting
the task, participants were asked to think about something negative and positive that happened
to them over the last few weeks, and think about the main reason they thought that event
happened. They were then asked to rate that reason on slider scales ranging from [caused]
”completely by myself”...”completely by other people or circumstances” (internal-external di-
mension) and [caused] ”by things that affect all areas of my life”...”by things related to the
specific circumstances” (global-specific dimension) (Figure S4a,c).

In order to maintain sustained attention on the task in a remote setting, a maximum response
time of 15s was applied to each trial. If this was exceeded, participants saw a time-out message,
and the trial was repeated. Participants were informed that submissions with either a high per-
centage of timed-out trials (>10%) or very short average choice times (<1s) may be rejected,
since completing the task required sustained attention and sufficient time to read the informa-
tion on each trial. In order to motivate performance, participants were also paid a small bonus
depending on the number of correct responses over the course of the task.

LEARNING CONTROL TASK

Response options (objects) were trial unique, with opposite reinforcement contingencies de-
pending on trial ‘valence’ (here, basket shape/colour). Response options varied along the di-
mensions human-made—natural and smaller—bigger than a shoebox. Response option stimuli
were images drawn from a previously-published database of object images for psychological ex-
periments, which has specifically validated all images along these specific dimensions using the
Object Memorability Image Normed Database Software (O-MINDS) v0.1.5 (41). O-MINDS gen-
erates low-variance stimulus sets with images that are approximately matched for human-rated
memorability, nameability, and emotionality. Specifically, response options (left-right random-
ized on every trial) were natural-smaller (than a shoebox) vs. natural-bigger objects for scenario
1, natural-smaller vs. human-made-smaller objects for scenario 2, and natural-smaller vs. ob-
jects human-made-bigger for scenario 3. The former types of objects were always correct for red
baskets, and the latter types of objects always correct for blue baskets.

Participants were asked to provide explicit slider ratings (along the relevant response dimen-
sions) for example objects at the start of the task, to orient them to the task state space.

SELF-REPORT MEASURES

Symptoms of low mood were measured using the PHQ-9 (42). A brief measure of social anxiety
symptoms, the miniSPIN (43), was also included given our previous observations that social
anxiety is relatively elevated in online research participation samples. The DAS-SF, a measure
of negative self-beliefs observed in some depressed people (44), was included as it has previously
been shown to be sensitive to cognitive treatment of low mood (45).

The demographic measure included questions about participant gender identity, age, neurodi-
vergence (explained to participants as “a term for when someone processes or learns information
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in a different way to that which is considered ‘typical’: common examples include autism and
ADHD”), previous treatment for a mental health problem, disability across World Health Or-
ganization Disability Assessment 2.0 domains of functioning (46), and financial, housing, and
employment status (as per Buckman et al. (2022) (47)). All self-report batteries included two
infrequency items (in which some responses are logically invalid or highly improbable), in order
to detect potential inattentive responding (48).

INITIAL STATISTICAL ANALYSIS OF LEARNING TASK DATA

Choice accuracy (whether the chosen response option was correct or not) and choice reaction
times (RTs) were modelled in linear mixed-effects regression models as

accuracy ∼ trialWithinBlock ∗ eventValence ∗ scenarioNo + (1 | subID) (S1)

RT ∼ trialWithinBlock ∗ eventValence ∗ scenarioNo + (1 | subID). (S2)

Explicit ratings scale data and classification label probabilities for free text data (see below)
were modelled as:

value ∼ eventValence ∗ scenarioNo + (1 | subID). (S3)

HIERARCHICAL BAYESIAN MODELLING

Model fit procedure. MCMC chains were initiated with random starting values, and posterior
distributions were formed using four chains of 4,000 iterations, with 2,000 discarded warm-up
samples (i.e., 8,000 kept iterations per model). Convergence of sampling chains was assessed
via inspection of trace plots, and by using standard diagnostics: bulk and tail effective sample
size > 100 and split R̂ statistics < 1.05 for each parameter (49).

Model comparison. Different models of the same data were compared using a cross-validation
procedure suitable for hierarchical Bayesian models, which guards against over-fitting by com-
paring predictive accuracy in left-out samples. Specifically, models were compared in terms of
expected log pointwise predictive density (ELPDdiff) using the R package loo (50). For exper-
imental effects of interest, parameters were assessed using 90% CrIs, with a 90% CrI excluding
zero interpreted as representing evidence for a meaningful contribution to posterior parameter
estimates.

HIERARCHICAL BAYESIAN MODELLING OF CAUSAL ATTRIBUTION TASK DATA

Participants’ choices on each trial were coded along two dimensions, according to whether an
internal (vs. external) or global (vs specific) response option was chosen (yinternal and yglobal,
respectively), with the resulting data analysed within a single hierarchical model with 4 free
participant-level parameters:

yinternal,p,t,v ∼ Bernoulli(θinternal,p,t,v)

yglobal,p,t,v ∼ Bernoulli(θglobal,p,t,v)
(S4)
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where θinternal,p,t,v and θglobal,p,t,v represent the latent traits governing a participant (p)’s ten-
dency to make an internal or global attribution at that time point (t), separately for positively
and negatively valenced (v) event scenarios.

As previously, data from the two task time-points (pre- and post-intervention) were fit using a
single hierarchical model, with separate group means for each parameter at each time-point,
and individual parameter estimates at each time-point assumed to be drawn from a multivariate
normal distribution, given a uniform prior over [−1, 1] on correlation of individual parameter
values across time-points. Also as previously (given evidence of correlations between individ-
uals’ tendencies to make global and internal attributions for positive and negative events), we
assumed that individual tendencies to make internal and global attributions for each type of
event within a given time-point were drawn from a multivariate normal distribution:

θinternal,1,neg

θglobal,1,neg

θinternal,2,neg

θglobal,2,neg

 ∼ MVNormal



θinternal,µ,1,neg

θglobal,µ,1,neg

θinternal,µ,2,neg

θglobal,µ,2,neg

 , σθ,neg



θinternal,1,pos

θglobal,1,pos

θinternal,2,pos

θglobal,2,pos

 ∼ MVNormal



θinternal,µ,1,pos

θglobal,µ,1,pos

θinternal,µ,2,pos

θglobal,µ,2,pos

 , σθ,pos


(S5)

where θinternal,µ,t,v and θinternal,µ,t,v are the group-level means for each parameter and time-point
(modelled separately for positive (pos) and negative (neg) events), and σ is the covariance
between individual-level parameters across attribution types and time points.

Participant-level parameter estimates were constructed using non-centered reparametrisations
in order to separate the hierarchical parameters and lower-level parameters in the prior (51).
For each parameter (e.g., ϕ) and time point t, participant-level estimates (ϕp,t) were constructed
from a group mean (ϕµ,t) and an individual offset (ϕ̃p,t) for all participants p. The between-
subjects effects of intervention group were then modelled as:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =

{
ϕµ,2 + ϕ̃p,2 + ϕCR, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2, if control intervention + learning task

(S6)

where ϕCR is a group-level parameter describing potential effects of allocation to the CR inter-
vention on parameter estimates at time 2. For all models, the priors for effects of intervention
conditions on parameter estimates were centred on 0 (e.g., ϕCR ∼ N(0, 1)).

For study 2, this model was augmented to include potential group-level effects of allocation the
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learning training task condition (ϕLEARN):

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =


ϕµ,2 + ϕ̃p,2 + ϕCR + ϕLEARN, if CR intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕLEARN, if control intervention + learning task
ϕµ,2 + ϕ̃p,2 + ϕCR, if CR intervention + control learning task

(S7)

Priors for group-level parameter means were specified using standard normal distributions,
ϕµ,s ∼ N(0, 1). Priors for group-level parameter standard deviations were specified as ϕσ,s ∼
Cauchy(0, 1). Priors for individual participant deviations from group-level parameter estimates
(θinternal,p,t,neg, θinternal,p,t,pos, θglobal,p,t,neg, θglobal,p,t,pos) were also specified using standard nor-
mal distributions (ϕ̃p,t ∼ N(0, 1)). The prior over the correlation matrix relating parameter
estimates across time-points was set to be uniform over [−1, 1] using an LKJ(1) prior.

The priors for group-level effects of interventions on parameter estimates at time 2 (ϕCR and
ϕLEARN), and group-level β weights governing influence of learning rates on effects of interest
(βLEARN, βCONTROL, βLEARN+CR), were also specified as N(0, 1).

Individual parameter estimates for latent traits governing tendency to attribute positive and
negative events to internal and global causes were unconstrained but passed to the Bernoulli
observation function (eq. 4) using an inverse logit transform, scaling probability of endorsement
to the range [0, 1] (see e.g., Figure 2).

HIERARCHICAL BAYESIAN MODELLING OF LEARNING TASK DATA

Model comparison. In order to determine the best model of task performance, several can-
didate models of study 1 learning task data were compared in terms of predictive accuracy in
left-out data. Specifically, a base model, with a single learning rate parameter, and where choice
values were reset at the start of the each scenario (in line with task instructions that differ-
ent kinds of explanations may be correct in each scenario), was compared to a set of related
models, where learning rates and initial starting values were allowed to vary between valence
conditions and between first and subsequent scenarios, motivated by features of the pilot and
study 1 datasets (Table S8). All compared models used a softmax observation function to link
values to observed choices, with a single free parameter governing inverse temperature (degree
of value-drivenness) of this function (see below).

Three models with separate learning rates for positive and negative events, as well as individual-
level free parameters governing starting values for internal-global attributions of positive and
negative events, performed similarly well (difference in expected log pointwise predictive den-
sity less than five times than the standard error of the estimate (50); Table S8). Of these, the
model with superior parameter recovery according to simulation-based calibration analysis was
taken forward for further analysis (see below). Re-running analyses with the alternate (‘win-
ning’) model produced a very similar pattern of results to those reported below, with all reported
main effects surviving.

For all subsequent analyses, learning task data were analysed as:

Qv,c,t = Qv,c,t + αv,p ∗ (outcomep,t −Qv,c,t) (S8)
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where Qv,c,t is the value of each choice (c) for each event valence (v) on trial t, αv,p is the
learning rate parameter for each participant (p) for each event valence (i.e., αpos, αneg), and the
outcome for that trial is either correct (1) or incorrect (0). Although greater value update rates
are not optimal in all settings, given the use of a deterministic reinforcement schedule in our
task, here larger posterior α parameter estimates are interpreted as representing faster learning.

Starting values of (initial bias towards or away from) internal-global explanations for each event
valence were set to separate free parameters for the start of the first scenario (individual initial
starting bias) and the second and third scenario (representing degree of expectation reset for
each participant at the start of subsequent scenarios). Q-values were assumed to map onto ob-
served choice data (y) using a softmax likelihood function with inverse temperature parameter
β:

yp,t ∼ CategoricalLogit(βp ∗
[
Qv,:,t

]
); (S9)

As both learning training and control learning tasks had identical trial type and reinforcement
structure, and in order to facilitate joint analysis, the same model identified above was applied
to both learning and control learning task data in study 2. Since linear-mixed effects analysis
indicated some differences in the form of learning between tasks (in both overall speed of learn-
ing and starting biases; see Figure S2, Supplementary Results), different group-level mean and
variance parameters were specified between tasks types (governing all individual-level parame-
ters, except the inverse temperature parameter β). Formal model comparison confirmed that a
model with separate group means for different task versions had better predictive accuracy than
a model with single group means (ELPDdiff = −124.8, SEdiff = 14.6).

Priors for group-level parameter means were specified using standard normal distributions,
ϕµ,s ∼ N(0, 1). Priors for group-level parameter standard deviations were specified as ϕσ,s ∼
Cauchy(0, 1). Priors for individual participant deviations from group-level parameter estimates
were also specified using standard normal distributions (ϕ̃p,t ∼ N(0, 1)).

Individual parameter estimates for learning rates (αneg, αpos) were constrained to be in range
[0, 1], and inverse temperature parameters (β) were constrained to be positive and in the range
[0, 20].

Simulation-based calibration (SBC) analysis. SBC analysis was used to validate inference pro-
cedures for the learning task models (52). Briefly, this involves generating draws from the prior
predictive distribution of the generative model (creating N simulated datasets), then fitting the
model to each simulated dataset and obtaining D independent draws from the model posterior.
For each parameter of interest, the rank of the simulated value within the posterior draws is then
calculated. If the data generation and inference procedure works as expected, then the resulting
ranks should be uniformly distributed across [0, D] (53). Here, we generated N=150 datasets
based on independent draws from the prior distributions of each parameter, which were speci-
fied generously based on the empirical posterior estimates of parameter distributions observed
in pilot data. We then took D=2000 posterior draws (after discarding 1000 warm-up samples),
across two sampling chains. Graphical summaries of SBC results were generated using the R
package SBC (53), and are available for the chosen learning model in Figure S10.

Model performance. Two model-agnostic ‘goodness-of-fit’ measures are reported. Posterior pre-
dictive accuracy was calculated as the match between replicated choice data generated stochas-
tically from posterior parameter estimates and task trial arrays, and the observed data from each

28



participant. Pseudo-r2 statistics reflect the amount of variance explained by the model relative
to a model of pure chance (54).
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SUPPLEMENTARY RESULTS

INITIAL STATISTICAL ANALYSIS OF LEARNING TASK DATA

Response accuracy. Choice data for the learning task is shown in Figure S2a,c. Analysis of
choice accuracy via mixed-effects linear models showed that, within each scenario, participants
were able to learn to select the correct attribution type (main effect of trial number within
block on response accuracy, study 1: F1,11793 = 81.7, p < 0.001, study 2: F1,6365 = 60.3, p <
0.001), and that this effect was greater for later task scenarios (main effect of scenario number,
scenario ∗ trial number interaction, study 1: F1,11793 = 128.8, 8.1, p < 0.005, study 2: F1,6365 =
83.3, p < 0.001), suggesting some learning carried over between scenarios. As can be seen in Fig-
ure S2, there was also statistical evidence of an influence of event valence on choice accuracy—
with lower overall accuracy and slower learning over the task for positive events (main effect of
event valence, valence ∗ trial number interaction, valence ∗ trial ∗ scenario number interaction,
study 1: F1,11793 = 245.0, 38.5, 19.6, p < 0.001, study 2: F1,6365 = 167.6, 22.0, 8.7, p < 0.005).
This suggests that participants found it harder to learn to select self-enhancing (internal-global)
attributions of positive events compared to unhelpful (non internal-global) attributions of neg-
ative events.

Choice reaction times. This valence asymmetry was also reflected in choice RTs (Figure S2a,d).
Overall, participants were slower to choose responses for positive events (main effect of event
valence on choice reaction time, study 1: F1,11793 = 8.4, p < 0.005, study 2: F1,6365 = 4.1, p <
0.05), although this was mainly evident in the first scenario (valence ∗ trial ∗ scenario number
interaction, study 1: F1,11793 = 33.4, p < 0.001, study 2: F1,6365 = 15.0, p < 0.001). Choice times
indicated maintenance of considered responding over the course of the task (mean RT>4s).

Explicit post-scenario ratings data. Across response dimensions and scenarios, participants
were able to recognise that the characteristics of ‘correct’ causes differed between positive
and negative events (main effect of event valence on ratings study 1: F1,2189 = 1091.7, p <
0.001, study 2: F1,1284 = 638.1, p < 0.001; Figure S4c), with this knowledge improving over
the task (valence ∗ scenario number interaction study 1: F2,2189 = 6.8, p < 0.005, study 2:
F1,1284 = 6.85, p < 0.005). Both of these effects were of smaller magnitude for the global-specific
compared to the internal-external response scale ratings (scale ∗ valence interaction, study 1:
F1,2189 = 16.8, p < 0.001, study 2: F1,1284 = 19.3, p < 0.001)—suggesting that participants found
this response dimension harder to parse.

Free text post-scenario descriptions. A zero-shot natural language classifier (BART-LARGE-
MNLI (35)) was also able to distinguish ground truth cause types from participants’ free text
descriptions of each scenario (Figure S4d). Specifically, there was statistical evidence of dif-
ferences in output label probabilities in the expected direction for the internal-external (“my-
self”, “other people”) dimension (event valence ∗ label interactions on output scores, study 1:
F1,2189 = 434.7, p < 0.001, study 2: F1,1177 = 301.8, p < 0.001), with differences in label
probabilities increasing over the task (valence ∗ label ∗ scenario number interaction, study 1:
F2,2189 = 37.7, p < 0.005, study 2: F2,1177 = 15.7, p < 0.001). For global-specific (“in gen-
eral”, “specific situations”), there was statistical evidence of differences in output label probabil-
ities in the expected direction only in study 1 (F1,2189 = 33.3, p < 0.001; study 2: F1,1284 =
3.3, p = 0.07), although in both cases differences in label probabilities increased over the
task (valence ∗ label ∗ scenario number interaction, study 1: F2,2189 = 6.3, p < 0.005, study 2:
F2,1284 = 6.5, p < 0.005).
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Relationship between explicit ratings and free text post-scenario descriptions. Explicit
ratings and free text classification label probabilities for the internal-external dimension were
also weakly correlated with each other (study 1: Rs = 0.17 − 0.36, p <= 0.01, study 2:
Rs = 0.26− 0.48, p < 0.001; Figure S5), suggesting that these measures were capturing at least
partially shared information. Specifically, participants with more accurate post-scenario internal-
external explicit cause ratings provided free text descriptions that were more easily classifiable
with ground truth cause type labels for this response dimension. For the noisier global-specific
dimension, there was limited evidence of any associations (study 1 and 2: Rs < 0.14, p > 0.05).

Differences between causal learning training and control tasks. When choice accuracy data
for the causal attribution and control learning tasks were combined in the same model, there
was evidence for lower overall accuracy for the control learning task (main effect of task type on
response accuracy, F1,5381 = 91.3, p < 0.001)—likely as performance was not aided by the pres-
ence of group-level initial biases towards correct response options (as was the case for the causal
task, Figure S2c). Control task participants did not also show a valence asymmetry in response
accuracy (for the control task, ‘valence’ represents sorting basket colour/type rather than posi-
tive or negative events; task type ∗ valence interaction, F1,9662 = 284.7, p < 0.001), and did not
show slower learning over the task for ‘positive’ events (task type ∗ valence ∗ scenario number,
tasktype ∗ valence ∗ trial number, and task type ∗ valence ∗ trial ∗ scenario number interactions,
F1,9662 = 148.1, 76.0, 33.7, p < 0.001)—suggesting this effect was specific to a reticence to select
self-enhancing attributions on the causal learning task.

When choice time data for both tasks were analysed together, there was strong statistical ev-
idence that choice times were faster for the control learning task (main effect of task type,
F1,564 = 269.1, p < 0.001)—likely reflecting faster processing speed for images compared to text-
based stimuli (Figure S2d). Control task participants were also not slower to choose response op-
tions for ‘positive’ (red basket) stimuli (task type ∗ valence interaction, F1,9662 = 4.1, p < 0.05).

Ratings values for the control task were substantially less variable and more extreme (Fig-
ure S4c), suggesting that the response dimensions for this task were more explicit and easily
parsed by participants (task type ∗ valence interaction in both tasks model, F1,1782 = 33.8, p <
0.001).

When the free-text responses from the control learning task were classified using the same can-
didate labels as for the causal learning task (which should not be relevant), there was strong
evidence that output label probabilities were lower across response dimensions (main effect
of task type, F1,162 = 139.6, 46.7, p < 0.001), as well as some evidence they were not sensi-
tive to trial ‘valence’ (task type ∗ valence ∗ label interaction, F1,1782 = 102.1, 6.44, p < 0.02)—
suggesting that the classifier results were somewhat specific to the task for which candidate
labels represented the ground truth, rather than, for example, picking out general language
features not related to task content.

Relationships between positive learning rates and self-reported demographic and clin-
ical data. Across studies, there was no evidence that mean posterior αpos estimates varied
according to participant age, gender identity, neurodivergence, or previous experience of talk-
ing therapy (all Rs < 0.1, Figure S8, Figure S9). Interestingly, whilst in study 1, there was
no evidence of a relationship between learning rates and current depression symptom severity
(PHQ-9, R < 0.1), in study 2 participants with higher current depression symptom severity had
lower positive learning rates (R = 0.26, p = 0.005). Control task learning rates did not vary by
gender, neurodivergence, or current mental health symptoms, but were negatively associated
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with age (R = 0.50, p < 0.001, Figure S8).

MODEL-BASED ANALYSIS OF LEARNING TASK DATA

Model performance. The mean posterior predictive accuracy of the model (agreement between
real choices and simulated choice data generated from posterior parameter estimates) in study
1 was 0.88 (SD 0.08), and in study 2 0.88 (SD 0.07). Pseudo-r2 (ratio of variance explained
compared to a random model) was 0.59 in study 1 and 0.57 in study 2.

For study 2 data, model performance was similar when separately considering the likelihood
of choice data of participants from either task type (causal learning task, mean posterior pre-
dictive accuracy=0.89, pseudo-r2=0.59; control learning task, mean posterior predictive accu-
racy=0.86, pseudo-r2=0.52).

Subgroup analysis in participants with clinically elevated depression symptoms. In an ex-
ploratory analysis, we investigated whether our main findings held in subsamples of participants
who reported clinically elevated depression symptoms on the PHQ-9 (i.e., PHQ-9 total score ≥
10 (42); study 1: N=63, study 2: N=42).

In the study 1 subsample, we replicated simple bivariate associations between learning rate
estimated on the learning training task and change in mean posterior internal attribution of
positive events on the causal attribution task (whole group r=0.361, p < 0.001; for correlation
with change in global attribution of positive events, r=0.141, p=0.113). From the joint model
of learning and causal attribution task data, we also found evidence of a meaningful contribution
of learning rate estimates to change in internal and global attributions of positive events in this
subsample (βLEARN internal-positive = 0.48 [90% CI = (0.24, 0.87)], βLEARN global-positive
= 0.27 [90% CI = (0.13, 0.50)]). We considered the sample too small to further break down
by intervention condition.

In the study 2 subsample, likely at least part due to the small number of available data points,
we did not replicate the simple bivariate association between learning rate estimated on the
learning training task and change in mean posterior internal attribution of positive events on the
causal attribution task (r=0.141, p=0.280) and found only very weak statistical evidence of an
association with change in global attribution of positive events (r=0.244, p=0.083). From the
joint model of learning and causal attribution task data, however, we again found evidence of a
meaningful contribution of learning rate estimates to change in internal and global attributions
of positive events, for the learning training but not control learning task (βLEARN internal-
positive=0.52 [90% CI = (0.22, 0.94], βLEARN global-positive = 0.47 [90% CI = (0.20, 0.86)];
βCONTROL internal-positive = -0.01 [90% CI = (-0.08, 0.08)], βCONTROL global-positive = -0.05
[90% CI = (-0.13, 0.04)]).

Together, these data provide preliminary evidence to suggest that one of our key findings—that
learning rates during specific learning training are positively associated with changes in attribu-
tion tendencies—may hold in clinical populations, though we emphasise that these analyses are
likely underpowered.
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SUPPLEMENTARY FIGURES

Figure S1: Distribution of self-reported clinical scores for both studies. a Study 1 participants.
The restructuring group represents participants randomized to the cognitive restructuring intervention,
with the control group representing participants randomized the control (emotion-focused) intervention.
Both groups completed the causal attribution learning task prior to completing the intervention. b Study
2 participants. Group 1 represents participants randomized to complete the learning task + cognitive
restructuring intervention. Group 2 represents the learning task + control intervention condition. Group
3 represents the control learning task + cognitive restructuring intervention condition. The 9-item pa-
tient health questionnaire assesses depressed mood; the short-form dysfunctional attitudes scale assesses
dysfunctional beliefs; and the 3-item social phobia inventory assesses social anxiety. Black dotted lines
represent previously-published cut-off scores for clinically-significant levels of symptoms on the PHQ-9
and miniSPIN. For the DAS-SF, where no such cut-off score is available, grey dotted lines represent mean
scores in previously-published samples of depressed inpatients. Participants were also asked if they had
ever previously received treatment (tx) for a mental health problem.
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Figure S2: Choice accuracy and response time data for the learning training tasks. a Study 1 learn-
ing task choice accuracy data. Participants were instructed that they would learn about three different
scenarios, each of which represented a different kind of mood a person could be in. For each scenario,
they had to learn (by trial and error) which kind of explanations for events were thought to be cor-
rect for a person in that particular mood. In truth, the correct (reinforced) attributions were always
self-enhancing explanations (i.e., internal-global attributions for positive events, and non internal-global
attributions for negative events).b Choice reaction times during the task, by event valence (in ms). c
Study 2 learning task choice accuracy data. Here, the top panels represent the same task as in a (the
‘causal’ learning training task), and bottom panels represent data from the control learning task. In the
control learning task, rather than selecting between different causes of events (trial-unique responses that
varied according to internal-external and global-specific response directions), participants were asked to
choose between images of trial-unique objects that varied according to human made-natural and smaller-
larger than a shoebox response dimensions. Trial type and reinforcement structure was identical to the
learning training task, with opposite response options reinforced as correct for different coloured/shaped
object ‘baskets’ (analogous to event valence in the causal attribution learning task). d Choice reaction
times for each learning task, in study 2 participants. Line graphs in all panels represent the mean and
standard error of participants’ data.
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Figure S3: Posterior mean parameter estimates for internal and global attribution of positive events
at pre- and post-intervention time-points. Top row, data from study 1. Bottom row, data from study
2. In all plots, time-point 1 is pre-intervention, and time-point 2 is post-intervention. In study 1, in-
terventions consisted of the learning training task plus either brief cognitive restructuring or a control
intervention. In study 2, group 1 completed the learning training task and brief restructuring interven-
tion, group 2 completed the learning training task and control intervention, and group 3 completed the
control learning task and brief restructuring intervention.
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Figure S4: Explicit ratings and free-text description data from the learning training tasks. a Within-
task explicit cause ratings data for study 1. After each scenario, participants were asked to rate the kinds
of causes of events that were thought to be correct, along two separate dimensions (external-internal
and specific-global). Prior to starting the task, participants were asked to think about a recent positive
and negative event from their own lives, and asked to rate the causes of these events along these two
dimensions, in order to help familiarise them with the response option state space. b Within-task free-
text cause description data for study 1. After each scenario, participants were also asked to provide
a free-text description of the kinds of causes that were thought to be correct, separately for positive
and negative events. This data was passed to a natural language processing algorithm (BART-LARGE-
MNLI (35)), which output classification probabilities for the candidate labels [events were caused by]
“myself”, “other people” “specific situations”, and “in general” (labels were non mutually-exclusive).
In all panels, raincloud plots show individual participant data, summarised by boxplots (median and
interquartile range). c The same plot as a, for study 2 data, for the causal attribution learning training task
(top row), and control learning task (bottom row). Labels in brackets describe the equivalent dimensions
in the control learning task. d The same plot as b, for study 2 data (causal learning task participants
only).
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Figure S5: Associations between explicit cause ratings and classifier label probabilities for free-
text descriptions of causes from the learning training task (study 1). X axes, explicit ratings of cause
types following each scenario, on the external-internal response dimension. Y axes, classifier output
probabilities for post-scenario free text descriptions of causes, for the labels [caused by] “myself” and
[caused by] “other people”.
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Figure S6: Correlations between mean posterior estimates of learning rates for positive events on
the learning training task (αpos) and within-task explicit cause type ratings. Pre-task ratings are
ratings provided by participants prior to starting the task, during which they are asked to reflect on the
causes behind a recent negative and positive event from their own lives, which would not be expected
to relate to within-task learning rates. Scenarios 1-3 represent ratings of ‘correct’ causes following each
task scenario, on an external-internal dimension scale (events were caused “completely by other people
or circumstances” or “completely by myself”) and specific-global dimension scale (events were caused
“by things related to the specific circumstances” or “by things that affect all areas of my life”). Posterior
αpos estimates are summarised by the mean of the posterior distribution for each participant, with point
weight representing the posterior precision of the estimate (1/SD).

38



Figure S7: Correlations between mean posterior estimates of learning rates for positive events on
the learning training task (αpos) and label classification probabilities of free-text descriptions of
correct cause types (study 1) Scenarios 1-3 represent classifier output for free-text descriptions of the
kinds of ‘correct’ causes in each preceding task scenario. Posterior αpos estimates are summarised by the
mean of the posterior distribution for each participant, with point weight representing the precision of
estimation (1/posterior SD).
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Figure S8: Relationships between mean posterior estimates of learning rates for positive events on
the learning training task (αpos) and self-reported participant demographic and clinical informa-
tion (study 1).

Figure S9: Relationships between mean posterior estimates of learning rates for positive events
from the learning training and and control learning tasks (αpos), and self-reported participant
demographic and clinical information (study 2).
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Figure S10: Simulation-based calibration analysis for the learning training task. a Rank histogram,
a check for uniformity of posterior draw ranks. Horizontal black line, expected average count; blue
trapezoid, approximate 95% interval for expected deviations over ranks. b (E)CDF, (empirical) cumu-
lative distribution functions for each model parameter. Blue ellipses, regions outlining expected 95%
deviations; circular plots show are rotated by 45° for easier visualisation of deviations. c Coverage plots,
which show the proportion of true variable values that fall within the 95% posterior credible intervals for
each parameter. Rank histogram, a check for uniformity of posterior draw ranks. Horizontal black line,
expected average count; blue trapezoid, approximate 95% interval for expected deviations over ranks. d
Simulated and recovered posterior values for independently randomly generated parameter values, for
150 simulated datasets.
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SUPPLEMENTARY TABLES

mean s.d. 2.5% 5% 95% 97.5% Neff

Mean θ for internal attributions
of negative events at time 1

-0.220 0.059 -0.335 -0.317 -0.125 -0.106 1335

Mean θ for internal attributions
of negative events at time 2

-0.520 0.093 -0.704 -0.671 -0.370 -0.339 1557

Mean θ for internal attributions
of positive events at time 1

1.084 0.070 0.946 0.970 1.199 1.222 1615

Mean θ for internal attributions
of positive events at time 2

2.520 0.185 2.171 2.230 2.834 2.891 1310

Mean θ for global attributions
of negative events at time 1

-0.582 0.051 -0.685 -0.667 -0.499 -0.484 2150

Mean θ for global attributions
of negative events at time 2

-0.734 0.064 -0.866 -0.842 -0.628 -0.610 2778

Mean θ for global attributions
of positive events at time 1

-0.061 0.066 -0.187 -0.168 0.046 0.069 1413

Mean θ for global attributions
of positive events at time 2

0.665 0.166 0.344 0.395 0.942 0.989 1550

Effect of restructuring on
θ internal-negative at time 2

-0.479 0.133 -0.740 -0.698 -0.264 -0.219 1925

Effect of restructuring on
θ internal-positive at time 2

0.325 0.263 -0.178 -0.100 0.766 0.847 1134

Effect of restructuring on
θ global-negative at time 2

0.073 0.089 -0.103 -0.074 0.219 0.253 3020

Effect of restructuring on
θ global-positive at time 2

0.498 0.237 0.039 0.114 0.895 0.965 1497

Table S1: Hierarchical Bayesian model results for effects of cognitive restructuring on causal attri-
bution tendencies in study 1 data mean, s.d., posterior mean and SD; 2.5%, 5%, 95%, 97.5%, posterior
probability quantiles for parameter estimates; Neff , effective sample size (an estimate of the number
of independent draws from the posterior distribution of the estimand of interest). All values are raw
(untransformed) parameter estimates (for transformation constraints applied to main text figures see
Supplementary Methods).
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mean s.d. 2.5% 5% 95% 97.5% Neff

Mean θ for internal attributions
of negative events at time 1

-0.280 0.070 -0.415 -0.393 -0.167 -0.145 2832

Mean θ for internal attributions
of negative events at time 2

-0.103 0.189 -0.467 -0.411 0.207 0.269 3510

Mean θ for internal attributions
of positive events at time 1

1.044 0.075 0.899 0.921 1.170 1.195 3263

Mean θ for internal attributions
of positive events at time 2

1.177 0.329 0.526 0.633 1.715 1.823 3208

Mean θ for global attributions
of negative events at time 1

-0.645 0.069 -0.784 -0.760 -0.532 -0.512 3782

Mean θ for global attributions
of negative events at time 2

-0.678 0.174 -1.025 -0.966 -0.395 -0.338 3719

Mean θ for global attributions
of positive events at time 1

-0.020 0.068 -0.153 -0.131 0.091 0.111 3011

Mean θ for global attributions
of positive events at time 2

-0.306 0.314 -0.930 -0.825 0.217 0.314 3274

Effect of restructuring on
θ internal-negative at time 2

-0.315 0.157 -0.627 -0.574 -0.060 -0.005 4082

Effect of restructuring on
θ internal-positive at time 2

0.648 0.282 0.108 0.185 1.113 1.206 3458

Effect of restructuring on
θ global-negative at time 2

0.029 0.143 -0.244 -0.204 0.268 0.315 4123

Effect of restructuring on
θ global-positive at time 2

0.336 0.268 -0.183 -0.107 0.776 0.853 3688

Effect of learning training on
θ internal-negative at time 2

-0.514 0.157 -0.825 -0.774 -0.260 -0.208 4082

Effect of learning training on
θ internal-positive at time 2

1.237 0.285 0.688 0.774 1.720 1.805 3424

Effect of learning training on
θ global-negative at time 2

-0.138 0.146 -0.421 -0.377 0.098 0.150 4054

Effect of learning training on
θ global-positive at time 2

1.025 0.269 0.485 0.577 1.467 1.546 3521

Table S2: Hierarchical Bayesian model results for effects of cognitive restructuring and learning
training on causal attribution tendencies in study 2 data. mean, s.d., posterior mean and SD; 2.5%,
5%, 95%, 97.5%, posterior probability quantiles for parameter estimates; Neff , effective sample size (an
estimate of the number of independent draws from the posterior distribution of the estimand of interest).
All values are raw (untransformed) parameter estimates (for transformation constraints applied to main
text figures see Supplementary Methods).
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mean s.d. 2.5% 5% 95% 97.5% Neff

Effect of restructuring on
θ internal-negative at time 2

-0.477 0.131 -0.732 -0.695 -0.261 -0.222 2428

Effect of restructuring on
θ internal-positive at time 2

0.234 0.214 -0.182 -0.116 0.587 0.658 2422

Effect of restructuring on
θ global-negative at time 2

0.071 0.090 -0.106 -0.077 0.218 0.246 4051

Effect of restructuring on
θ global-positive at time 2

0.411 0.196 0.034 0.089 0.736 0.800 2700

βLEARN, effect of αpos on
θ internal-positive at time 2

0.562 0.175 0.306 0.337 0.884 0.975 554

βLEARN, effect of αpos on
θ global-positive at time 2

0.457 0.141 0.246 0.272 0.715 0.795 458

Table S3: Joint hierarchical model 1 results for study 1 data. mean, s.d., posterior mean and SD;
2.5%, 5%, 95%, 97.5%, posterior probability quantiles for parameter estimates; Neff , effective sample
size. All values are raw (untransformed) parameter estimates, except β values which are in units of αpos

(which ranges [0,1]), which have been transformed to a similar range as other intervention effects by
/100.
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mean s.d. 2.5% 5% 95% 97.5% Neff

Effect of restructuring on
θ internal-negative at time 2

-0.314 0.151 -0.605 -0.562 -0.065 -0.024 3604

Effect of restructuring on
θ internal-positive at time 2

0.678 0.294 0.105 0.196 1.162 1.262 4754

Effect of restructuring on
θ global-negative at time 2

0.027 0.139 -0.247 -0.203 0.253 0.295 3760

Effect of restructuring on
θ global-positive at time 2

0.351 0.282 -0.196 -0.114 0.818 0.906 3955

Effect of learning training on
θ internal-negative at time 2

-0.511 0.153 -0.816 -0.763 -0.265 -0.213 3361

Effect of learning training on
θ internal-positive at time 2

-0.900 0.525 -1.930 -1.754 -0.025 0.167 1920

Effect of learning training on
θ global-negative at time 2

-0.143 0.144 -0.430 -0.380 0.092 0.131 3381

Effect of learning training on
θ global-positive at time 2

-0.960 0.542 -2.033 -1.835 -0.077 0.121 1190

βLEARN, effect of αpos on
θ internal-positive at time 2

0.293 0.090 0.149 0.167 0.453 0.497 1175

βLEARN, effect of αpos on
θ global-positive at time 2

0.259 0.087 0.116 0.134 0.415 0.450 909

βCONTROL, effect of αpos on
θ internal-positive at time 2

0.006 0.016 -0.022 -0.017 0.034 0.043 869

βCONTROL, effect of αpos on
θ global-positive at time 2

0.007 0.014 -0.019 -0.014 0.031 0.038 1088

Table S4: Joint hierarchical model 1 results for study 2 data. mean, s.d., posterior mean and SD;
2.5%, 5%, 95%, 97.5%, posterior probability quantiles for parameter estimates; Neff , effective sample
size. All values are raw (untransformed) parameter estimates, except β values which are in units of αpos

(which ranges [0, 1]), which have been transformed to a similar range as other intervention effects by
/100.
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mean s.d. 2.5% 5% 95% 97.5% Neff

Effect of restructuring on
θ internal-negative at time 2

-0.477 0.134 -0.740 -0.696 -0.255 -0.214 1794

Effect of restructuring on
θ internal-positive at time 2

-0.385 0.469 -1.317 -1.164 0.371 0.516 1102

Effect of restructuring on
θ global-negative at time 2

0.071 0.092 -0.106 -0.080 0.223 0.253 2979

Effect of restructuring on
θ global-positive at time 2

0.161 0.387 -0.617 -0.483 0.787 0.921 2232

βLEARN, effect of αpos on
θ internal-positive at time 2

0.579 0.187 0.288 0.327 0.922 1.021 711

βLEARN, effect of αpos on
θ global-positive at time 2

0.474 0.159 0.225 0.257 0.770 0.849 524

βLEARN+CR, additional effect
of αpos on θ internal-positive at
time 2 in restructuring group

0.229 0.164 -0.042 -0.002 0.516 0.602 1178

βLEARN+CR, additional effect
of αpos on θ global-positive at
time 2 in restructuring group

0.095 0.105 -0.093 -0.062 0.284 0.337 1753

Table S5: Joint hierarchical model 2 results, for study 1 data. mean, s.d., posterior mean and SD;
2.5%, 5%, 95%, 97.5%, posterior probability quantiles for parameter estimates; Neff , effective sample
size. All values are raw (untransformed) parameter estimates, except β values which are in units of αpos

(which ranges [0, 1]), which have been transformed to a similar range as other intervention effects by
/100.
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mean s.d. 2.5% 5% 95% 97.5% Neff

Effect of restructuring on
θ internal-negative at time 2

-0.318 0.151 -0.614 -0.564 -0.068 -0.023 2959

Effect of restructuring on
θ internal-positive at time 2

1.060 0.534 0.022 0.185 1.942 2.110 1653

Effect of restructuring on
θ global-negative at time 2

0.029 0.143 -0.256 -0.206 0.262 0.308 2679

Effect of restructuring on
θ global-positive at time 2

-0.176 0.495 -1.149 -0.991 0.630 0.800 2272

Effect of learning training on
θ internal-negative at time 2

-0.515 0.152 -0.819 -0.767 -0.265 -0.217 2904

Effect of learning training on
θ internal-positive at time 2

-0.689 0.550 -1.757 -1.589 0.210 0.379 1681

Effect of learning training on
θ global-negative at time 2

-0.137 0.146 -0.425 -0.376 0.104 0.152 2664

Effect of learning training on
θ global-positive at time 2

-1.377 0.575 -2.505 -2.320 -0.427 -0.215 1357

βLEARN, effect of αpos on
θ internal-positive at time 2

0.353 0.118 0.172 0.195 0.569 0.637 836

βLEARN, effect of αpos on
θ global-positive at time 2

0.282 0.103 0.125 0.145 0.462 0.523 693

βLEARN+CR, additional effect
of αpos on θ internal-positive at
time 2 in restructuring group

-0.066 0.094 -0.260 -0.226 0.083 0.111 1815

βLEARN+CR, additional effect
of αpos on θ global-positive at
time 2 in restructuring group

0.089 0.085 -0.060 -0.036 0.236 0.276 1557

βCONTROL, effect of αpos on
θ global-positive at time 2

0.007 0.021 -0.026 -0.019 0.039 0.053 438

βCONTROL, effect of αpos on
θ internal-positive at time 2

0.012 0.020 -0.016 -0.012 0.043 0.058 339

Table S6: Joint hierarchical model 2 results, for study 2 data. mean, s.d., posterior mean and SD;
2.5%, 5%, 95%, 97.5%, posterior probability quantiles for parameter estimates; Neff , effective sample
size. All values are raw (untransformed) parameter estimates, except β values which are in units of αpos

(which ranges [0, 1]), which have been transformed to a similar range as other intervention effects by
/100.
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model description
ELPDdiff

(choice data)
SEdiff

(choice data)

base model
Model of choice data only (pre and post-intervention),
as described in Norbury et al. (2024) (17).

-21.5 9.8

joint model 1
Joint model of choice data + β weights representing
influence of αpos on post-intervention internal-
positive and global-positive parameter estimates

-10.3 9.3

joint model 2

As above, with additional β weights representing
influence of αpos on post-intervention internal-
positive and global-positive parameter estimates in
restructuring condition participants

0.0 0.0

Table S7: Model comparison results for causal attribution task data likelihood from the original
(base) model, compared to joint models of causal attribution and learning task data in study
1. ELPDdiff , difference in ELPD for each model from the best model, which is defined as having zero
difference to itself. SEdiff , the standard error of this difference.
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model description params ELPDdiff SEdiff

m qlearning negpos 1alpha

Q-learning model with separate values for internal-
global and non-internal global response options for
positive and negative events, single learning rate α,
and inverse softmax temperature parameter β as
individual-level free parameters

2 -655.7 41.6

m qlearning negpos 2alpha
As above, with separate αs for positive and negative
events

3 -526.8 36.3

m qlearning negpos 2alpha 2q0
As above, with a group-level parameter governing
the starting values of internal-global attributions (q0)
for positive and negative events, across all scenarios

3 -70.0 14.8

m qlearning negpos 2alpha 2q0 init delta
As above, with q0 applied to the first scenario only,
then incremented by a group-level delta parameter
for scenarios 2,3

3 -20.3 10.5

m qlearning negpos 2alpha 2q0 init 2delta
As above, with scenario 2 q0 = q0 + delta, and
scenario 3 q0 = q0 + 2*delta

3 -13.6 8.2

m qlearning negpos 2alpha 2q0i
As m qlearning negpos 2alpha, but with q0 as an
individual-level free parameter applied to all
scenarios (q0i)

5 -59.9 13.6

m qlearning negpos 2alpha 2q0i init As above, with q0i applied to scenario 1 only 5 -428.6 30.9

m qlearning negpos 2alpha 2q0i init delta
As above, with starting value for scenarios 2,3
defined as q0i + a group-level delta parameter

5 -2.4 7.3

m qlearning negpos 2alpha 2q0i init 2delta
As above, with scenario 2 q0 = q0i + delta, and
scenario 3 q0 = q0i + 2*delta

5 0.0 0.0

m qlearning negpos 2alpha 2q0i1 2q0i23*
As m qlearning negpos 2alpha 2q0i, with
separate individual-level free parameters governing
q0 for scenario 1 and scenarios 2,3

7 -5.0 9.1

Table S8: Model comparison results for causal attribution learning task data from study 1.
ELPDdiff , difference in expected log pointwise predictive density for each model from the best model,
which is defined as having zero difference to itself. SEdiff , the standard error of this difference. Models
with an ELPD difference of greater than several times the SE of the estimate are usually taken to indi-
cate better predictive performance. params, number of individual-level free parameters. Bold font, best
models with roughly equivalent performance. *, model taken forward for subsequent analyses based on
results of simulation-based calibration and parameter recovery analysis.
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