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Abstract

Affective states are dynamic, fluctuating in response to recent events: an unexpected plea-
sure, a disappointing loss. Affective biases, which cause disruptions in these dynamics, are
core components of mental ill-health, but the specific effects of treatments on these biases are
poorly understood. Here, we investigate the impact of common psychiatric treatments on
subjective assessments of happiness, confidence, and engagement during a reinforcement
learning task (N=935; 130 taking antidepressant medications). Half (N=459) of the par-
ticipants were randomised to practice a common psychotherapeutic technique—cognitive
distancing—throughout the task. From a joint computational model of learning and affect,
we find evidence for distinct and overlapping impacts of psychiatric treatments on affective
dynamics. Cognitive distancing attenuates downward drift in happiness and engagement
and increases recency bias in the affective impact of recent choices. Conversely, antidepres-
sant use increases baseline happiness and confidence in individuals with similar levels of
current symptoms, and decreases recency bias such that more past events influence affective
states. Crucially, both cognitive distancing and antidepressant use converge to dampen
negative biases in happiness and confidence specifically in participants experiencing higher
levels of anxiety and depression symptoms. Together, our results indicate that common
treatments for mental ill-health may alter symptoms through their impact on affective dy-
namics, but via distinct mechanisms.
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1 Background

How are you feeling right now? Research across economics, psychology, and health sciences1

suggests the answer to this question—your subjective well-being—is closely tied to objective2

quality of life1,2 and health across the lifespan3. But feelings are far from static, momentarily3

fluctuating in response to recent events4–6, and even individual choices. Frequently ask-4

ing participants to rate their feelings enables a read-out of moment-to-moment changes in5

subjective well-being, or their affective dynamics.6

In influential work, Rutledge et al. (2014)5 demonstrated momentary happiness ratings7

during a gambling task could be accurately predicted by a computational model incorporat-8

ing the average reward for a gamble (expected value) and the outcome of the gamble minus9

this average (prediction error). Using a task where reward magnitude and probability were10

uncorrelated, Blain & Rutledge (2020)7 subsequently showed that momentary happiness11

is particularly sensitive to changes in learning-related variables—specifically, prediction12

errors for reward probability—as compared to as compared to reward information that13

was relevant to behaviour but not learning. Links between happiness ratings and learning-14

related quantities may extend to subjective assessments of other affective states. Theoretical15

accounts posit that momentary confidence is the approximate probability a choice is cor-16

rect8,9 (though see10,11), while effort costs decrease the value of choices independently of17

reward probability12,13, in turn influencing momentary engagement. Together, these results18

suggest that affective dynamics are closely coupled with objective quantities that drive19

choices during learning.20

Biases in subjective affect are a core feature of mental ill-health. Symptoms of depression21

have been consistently linked to lower7,14 and less stable15,16 momentary happiness, while22

transdiagnostic features of mental ill-health have been linked to biased confidence judge-23

ments at different timescales17–20 and impairments in motivation and engagement13,21–23.24

Affective biases maintain symptoms of mental ill-health by inducing changes in emotion25

processing and perception24,25. For example, negatively biased perception—a common fea-26

ture of depression26—may cause low mood by making outcomes appear less rewarding; low27

mood in turn further negatively biases perception, causing a positive feedback loop which28
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spirals toward a depressive episode27. Successful psychiatric treatment may act to perturb29

these maladaptive cycles. Short-term selective serotonin reuptake inhibitor (SSRI) adminis-30

tration induces positive perceptual biases in healthy participants28, suggesting that affective31

biases may be an early target of antidepressant drugs, acting to shift choices away from32

those that maintain low mood29. Crucially, given that affective biases are precipitated and33

maintained by negative thinking patterns—a core target of cognitive psychotherapy30,31—34

they may represent a transdiagnostic treatment target of psychological and pharmacological35

interventions for symptoms of mental ill-health.36

Here, we aimed to link choice behaviour to affective dynamics throughout a reinforcement37

learning (RL) task32–34 (Figure 1A) and to relate this to mental ill-health symptoms and38

treatments. We asked online participants (N=935) to rate their feelings (from 0-100) on39

one of three different affect scales—happiness, confidence, and engagement—after receiving40

feedback on each choice they made. Half (49.1%) of the participants were randomised41

to an acute psychological intervention known as ”cognitive distancing”, a common35 and42

effective31 component of psychological therapy which alters learning in this task34. We also43

collected information on current antidepressant medication use in a demographic ques-44

tionnaire (reported by 13.9% of participants), and derived transdiagnostic mental health45

symptom factor scores from a psychiatric questionnaire battery36,37. We then assessed how46

participants’ affect ratings across each of the three scales covaried with learning-related47

outcomes throughout the task, accounting for underlying affective biases, using compu-48

tational modelling. By quantifying the associations between model-derived measures of49

affective dynamics and transdiagnostic features of mental ill-health, the cognitive distancing50

intervention, and self-reported antidepressant medication use, we asked whether affective51

dynamics may be a common target of treatments for symptoms of mental ill-health.52

3



P R E P R I N T

2 Methods

2.1 Online experiment and sample

A total of 995 participants were recruited via Prolific38 over three weeks in April-May 2021.53

Participants were recruited in batches with fixed pre-screeners for age range, gender, and54

history of any mental health diagnosis, which resulted in a sample broadly representative55

of the UK population in terms of these characteristics (see34 for details). After completing56

a demographic questionnaire, which included questions on current medication usage and57

mental health diagnoses, participants completed the RL task described below. They then58

took a short test of working memory (visual digit span), and answered questions from59

several psychiatric questionnaires, answers from which were used to derive three validated60

transdiagnostic features of mental health (anxiety/depression, compulsive behaviour, and61

social withdrawal)36, using methods for computational factor modelling37 described in de-62

tail elsewhere34,39. Sixty participants were excluded for meeting pre-registered criteria34.63

The study was approved by the University of Cambridge Human Biology Research Ethics64

Committee (HBREC) (HBREC.2020.40) and jointly sponsored by the University of Cam-65

bridge and Cambridge University Hospitals National Health Service (NHS) Foundation66

Trust (IRAS ID 289980). All participants provided written informed consent through an67

online form, in line with University of Cambridge HBREC procedures for online studies.68

2.2 Reinforcement learning task

The reinforcement learning task in the present study—the probabilistic selection task32,33—69

involved learning which symbol in each of three pairs was more likely correct. Consistent70

choice of the “better” symbol in each pair enabled a participant to accumulate more points71

(and maximise their chances of winning a monetary bonus). One symbol in each pair72

was always more likely correct, but the contingencies varied across the pairs, from 0.8/0.273

(‘AB’) to 0.7/0.3 (‘CD’), to 0.6/0.4 (‘EF’). All participants saw the same six symbols, but the74

pairs were randomised across individuals and counterbalanced across trials. After making75

a choice, participants received feedback (“Correct!” or “Incorrect.”), and then rated their76

subjective happiness, confidence, or engagement (Figure 1A).77
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One of the three questions was asked after each trial outcome, with each question asked78

twenty times per block of sixty trials, and never more than twice in a row. Participants were79

also asked to rate (again from 0-100) how fatigued they felt compared to the beginning of80

the block after the end of each of the sixty-trial training blocks. After six training blocks, par-81

ticipants were tested on all fifteen unique pairs without feedback. We previously reported82

the effects of cognitive distancing on task performance and learning, including results of the83

test phase, in the same sample34.84

2.3 Acute psychological intervention and antidepressant use

Half of the participants (n=459; 49.1%) were randomised to be taught, and then practice85

throughout the task, a psychotherapeutic technique termed “cognitive distancing”, which86

encouraged them to “take a step back” from their emotional reactions to feedback through-87

out the task (see here34 for further details). Apart from an additional instructional video88

before the task started and a small prompt to ”Distance yourself...” which appeared with89

each fixation cross (Figure 1A), the task was identical for distanced and non-distanced par-90

ticipants. To explore similarities between the effects of this psychological intervention, and91

a pharmacological treatment for mental ill-health, antidepressant medication, we also asked92

participants to report their current medication use: 130 participants (13.9%) reported current93

antidepressant use, with the majority (n=94; 72.3%) taking an SSRI.94

2.4 Computational modelling: joint RL-affect models

For consistency with previous literature, we used the well-characterised model of momen-95

tary happiness first described by Rutledge et al. (2014)5 as a baseline model. This model as-96

sumes fluctuations around a baseline (i.e., longer-term mean) can be captured by a weighted97

sum of recent expected values and prediction error and, importantly, does not condition on98

previous ratings.99

The Rutledge et al. (2014)5 model has been primarily validated in (e.g., gambling) tasks100

where expected values and prediction errors are explicitly available to participants5,40. As101

such, we extended it to account for learning in this task. Specifically, our model—which we102

term a joint RL-affect model—comprised two components: (1) a Q-learning model to infer103
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expected values and prediction errors from participants’ choices (which has been shown to104

accurately capture choice behaviour in this task33,34); and (2) a model for momentary affect105

which assumes fluctuations around a baseline can be captured by a recency-weighted sum106

of Q-learning model-derived expected values and prediction errors5,41. Hierarchical models107

were simultaneously fitted to task choices plus happiness, confidence, and engagement self-108

reports, assuming different parameter weights across all scales and participants.109

2.4.1 RL models

A Q-learning model infers expected values (termed Q-values) from participant choices—the110

action (at) of choosing one symbol over the other in each of the three pairs (denoted as states,111

st)—by assuming they update at each trial t based on prediction errors δt, with the update112

magnitude controlled by a learning rate α ∈ [0, 1]:113

Qt+1(st, at) = Qt(st, at) + αδt where δt = rt −Qt(st, at). (1)

We additionally considered a dual learning rate Q-learning model for choices, in which114

the learning rate is assumed to differ depending on whether the outcome was rewarding115

(αreward) or not (αloss)33:116

Qt+1(st, at) = Qt(st, at) + αreward[δt]+ + αloss[δt]−. (2)

In both cases, the difference in Q-values between the chosen (at) and avoided action (āt)117

is transformed to a choice probability using a softmax function, weighted by an inverse118

temperature β:119

Pt(st, at) =

(
1 + exp

{
−β
[
Qt(st, at)−Qt(st, āt)

]})−1

. (3)

2.4.2 Affect models

Baseline model

Affect ratings scaled to [0, 1] for each participant and rating type (i.e., happiness, confidence120

or engagement) were assumed to be drawn from independent Beta distributions with a121
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mean-variance reparameterization which models the shape parameters as functions of a122

(conditional) mean and precision42. Extreme ratings (0 or 1) were allowed in the task, so123

we transformed ratings to the (0, 1) interval using a simple transformation43 (y′ = y(N−1)+0.5
N

;124

here N is the total number of participants but could be any large number). A logit link func-125

tion was used, so the Beta regression weights (excluding the intercept wp
0) can be interpreted126

as the log odds ratio per unit change in the covariate for an increase in affect rating, with127

other terms held constanta. Following5,41 we write the ith participant’s affect rating Y (i) for128

rating type p at trial t as,129

Y
(i)
t,p ∼ Beta

(
µ
(i)
t ϕp, (1− µ

(i)
t )ϕp

)
(4)

130

log

(
µ
(i)
t

1− µ
(i)
t

)
= wp

0 + wp
2

t∑
t′=1

γt−t′

p Qt′(st′ , at′) + wp
3

t∑
t′=1

γt−t′

p

[
rt′ −Qt′(st′ , at′)

]
, (5)

where t is the overall trial number at rating number i for rating type p, γ is the discount or131

‘forgetting’ factor which imposes a strict weighting on recent trials, and wp
k the weights on132

each of the k quantities of interest for the pth rating type; and Qt′ and rt′ are the Q-learning133

model-derived expected values for the chosen symbol at′ in the state st′ (i.e., the pair of134

symbols presented on trial t′) and the feedback valence (±1 for correct/incorrect to allow135

for negative Q-values) respectively, both at trial t′. Note that both sums are over all previous136

trials, not just those of rating type p.137

Accounting for drift over time

We also fit models including an extra weight wp
1 to account for potential ”drift over time” in138

affect44, by modifying (5) as follows,139

log

(
µ
(i)
t

1− µ
(i)
t

)
= wp

0 + wp
1 τt + wp

2

t∑
t′=1

γt−t′

p Qt′(st′ , at′) + wp
3

t∑
t′=1

γt−t′

p

[
rt′ −Qt′(st′ , at′)

]
, (6)

where τt is some measure of time elapsed up to trial t: either trial number, block number,140

overall time elapsed, or time elapsed since the start of that block (see Model comparison).141

aNote that our approach differs slightly from that of Rutledge et al. (2014)5, who assume momentary happiness ratings
follow a Gaussian distribution; see Forbes & Bennett (2024)41 for a validation of this Beta regression approach.
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2.4.3 Fits to data

Models were fitted in a hierarchical Bayesian manner, with approximate posteriors derived142

via automatic differentiation variational inference (ADVI)45 implemented in CmdStan46.143

All models were fit to choices and ratings on all three affect scales simultaneously across144

both distancing and non-distancing participants, with separate weights and decay factors145

assumed for each person and question, and separate group-level (hyper)priors on each146

parameter. In other words, participant-level parameter distributions are assumed to be con-147

ditionally independent given the group-level distribution over that parameter. Individual-148

level predictive accuracy was assessed by comparing responses predicted from each par-149

ticipant’s approximate posterior to their observed affect ratings via pseudo-R2, defined150

following previous work42 as the squared correlation between observed and mean posterior151

predictions.152

2.4.4 Model comparison

In the affect model, we tested for ”drift over time”44; and in the Q-learning model we tested153

for separate learning rates for rewarding and non-rewarding outcomes. We assumed the154

Rutledge et al. (2014)5 model (equation 5) to be the baseline model, and so the parameters in155

this model were included in all models.156

Drift over time in affect may be particularly relevant to our task, as participants were able157

to take as long as they wished to rate their subjective feelings, and time between blocks was158

additionally unconstrained. As such, we compared four models with different measures of159

time elapsed (i.e., variants of equation 6) to the baseline model (equation 5), and either single160

or dual learning rates. The extra parameter added linear weights on either trial number,161

block number, or total time elapsed. We also tested a final model with two extra parameters:162

weights on both total time elapsed and time elapsed since the beginning of that block. We163

then compared all ten models in terms of their approximate leave one out (LOO) expected164

log pointwise predictive density (ELPD), a metric of estimated out-of-sample predictive165

accuracy47, corrected for the use of variational approximations to the true posterior48.166
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2.5 Statistical analysis

For consistency with computational modelling, we adopt a fully Bayesian approach for167

statistical analyses where possible. As such, results are given as estimates with a highest168

density interval (HDI), which (unlike a confidence interval (CI)49) can be interpreted as the169

probability that the true value falls within a given range. We report 95% HDIs to align with170

convention but interpret results in terms of strength of evidence throughout; an overlap171

with the null value should not be seen as evidence for lack of an effect, but rather weakened172

evidence for it.173

2.5.1 Associations between model parameters and mental health symptoms & treatments

We tested the effect of differences in transdiagnostic mental health symptoms, current self-174

reported antidepressant use, or cognitive distancing on model parameters using generalised175

linear models (GLMs), adjusted for age, gender, and working memory capacity (measured176

with visual digit span), separately for each rating type. GLMs relating model parameters to177

antidepressant use were run with and without adjustment for concurrent anxiety/depression178

symptoms (i.e., factor score), as medication use was not randomised. We also considered179

whether the effect of cognitive distancing and current antidepressant use on affect model180

parameters may differ in relation to their association with transdiagnostic mental health, by181

including factor score as an interaction term in GLMs.182

Posterior samples for GLM coefficients were obtained via Markov chain Monte Carlo183

(MCMC) implemented in CmdStan46, with 2,000 warm-up and 10,000 sampling iterations184

for each of four chains, using models and priors from the rstanarm R package50. Response185

distributions were assumed Gaussian for all parameters except for learning and decay rates,186

which were modelled via Gamma family GLMs (with log link functions). See Interpretation187

of model-derived parameters in the Supplementary Methods for intuition as to how these188

regression coefficients are interpreted.189

2.5.2 Differences in associations with baseline affect between transdiagnostic factors

To account for potential collinearities in the three transdiagnostic mental health symptom190

factor scores obtained via computational factor modelling, we used partial least squares191
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(PLS) regression to test which of the transdiagnostic factor scores was most strongly associ-192

ated with baseline affect (wp
0). PLS regression is a data-driven method which identifies latent193

components linking multivariate responses to predictors based on shared covariance, and194

so is well-suited to the problem of multicollinearity51.195

In line with best-practices39, we first identified the number of components that best196

described our data in a training set (80% of participants) in terms of mean squared error197

(MSE) and R2 via ten-fold cross-validation. We then validated the predictive accuracy of this198

number of components in held-out test data (20% of participants), and formally tested this199

using a permutation test, where the PLS regression model was re-trained on 10,000 training200

datasets with shuffled outcome labels (providing a null distribution), and the fraction of201

these datasets where the MSE between the test data and the predictions from the permuted202

datasets was lower than the true train-test MSE taken as the p-value. The PLS regression203

with the chosen number of components was then refitted in the whole dataset, to obtain204

component loadings on each of the responses and predictors. Lastly, we computed bias-205

corrected and accelerated (BCa) CIs for each of the loadings, plus the differences in loadings206

between transdiagnostic factors, from 10,000 bootstrap samples.207
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3 Results

3.1 A computational model of subjective happiness accounting for learning and affec-

tive drift also captures momentary confidence and engagement

Following model comparison, we found that the best-fitting RL-affect model included sep-208

arate learning rates for rewarding and non-rewarding outcomes and a linear effect of time209

elapsed since the beginning of the task (equation 6; Figure 1D). This model, when fitted210

to all affect ratings and participants simultaneously, explained participants’ variance in211

happiness, confidence, and engagement assessments with similar accuracy (mean [standard212

deviation (SD)] pseudo-R2 = 0.40-0.42 [0.23-0.26]; see Figure 1C for example individuals).213

3.2 Baseline affect is negatively associated with transdiagnostic mental health

We first assessed whether individuals’ estimated model parameters from the best-fitting214

joint RL-affect model were associated with transdiagnostic features of mental health.215

In line with previous work7,14, we found strong evidence for a negative association be-216

tween baseline happiness (whappy
0 ) and anxiety/depression symptoms from a linear model217

adjusting for age, gender, digit span, and distancing (mean 4.44-point lower baseline hap-218

piness rating per SD increase in factor score; 95% HDI = [-5.46, -3.41]). Higher anxiety/219

depression factor scores were additionally associated with lower baseline confidence (mean220

3.75-point lower wconfident
0 per SD increase in score; 95% HDIs = [-5.01, -2.46]) and lower221

baseline engagement (mean 2.90-point lower wengaged
0 per SD increase in score; 95% HDIs222

= [-4.12, -1.66]; Figure 2Ai). We also found that higher anxiety/depression factor scores223

were associated with lower odds of increases over time in happiness (mean 11.2% lower224

whappy
1 per SD increase in anxiety/depression score per hour; 95% HDI for multiplier = [0.808,225

0.971]) and engagement (17.0% lower wengaged
1 for a unit increase in anxiety/depression score226

per hour; 95% HDI for multiplier = [0.726, 0.943]; Figure 2Aii), suggesting a higher rate227

of decline (i.e., more drift) in happiness and engagement in participants with higher anxi-228

ety/depression scores.229

Higher compulsive behaviour and social withdrawal factor scores were also each asso-230

ciated with lower baseline happiness (e.g., mean 2.20-point lower whappy
0 [95% HDI = (-3.31,231
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A

Pseudo-R2 = 0.40

Pseudo-R2 = 0.39

Pseudo-R2 = 0.42

Figure 1: Task design, affect model posterior predictions and model comparison.. A. The task design. B.
Mean affect ratings for each rating type (engaged, happy, or confident), by distancing group, compared to
model predictions (light-coloured lines). C. Example comparison of predictions from the best-fitting model
(light-coloured lines) to raw affect ratings from three different individuals with the median pseudo-R2 for
each rating type. D. Model fit compared to the best-fitting model (time elapsed, overall with dual learning
rate) in terms of their ELPD (i.e., higher ELPD [or less negative ELPD compared to the best-fitting model] is
better), estimated via Bayesian approximate LOO cross-validation47. Ribbons in B-C and error bars in D denote
standard errors.
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-1.06)] per SD increase in compulsive behaviour score; Figure Figure 2Bi) and confidence232

(e.g., mean 3.59-point lower wconfident
0 [95% HDI = (-3.98, -1.38)] per SD increase in social233

withdrawal score; Figure 2Ci), but were not associated with greater drift in affect over234

time (Figure 2Bii & Figure 2Cii). Associations between transdiagnostic symptom scores and235

choice-related affect measures (i.e., wp
2 and wp

3 were also observed (Figure S3), as were strong236

associations between post-block fatigue ratings and both baseline and drift in affect over237

time (Figure S5; see Supplementary Results for more details).238

3.3 Baseline affect is most strongly associated with anxiety/depression symptoms

The three transdiagnostic mental health symptom factor scores obtained via computational239

factor modelling were highly correlated (r = 0.47 [95% CI: (0.42, 0.52)] between anxiety/ de-240

pression and compulsive behaviour; r = 0.61 [95% CI: (0.57, 0.65)] between anxiety/ depres-241

sion and social withdrawal; r = 0.42 [95% CI: (0.37, 0.47)] between compulsive behaviour242

and social withdrawal). As such, to compare the strength of associations between baseline243

affect and transdiagnostic symptom factors, we used a partial least squares regression model244

to relate baseline affect to the three scores plus age, gender, digit span, and distancing.245

We found that a three-component model represented the best compromise between pre-246

dictive accuracy (in training data) and parsimony (Figure 2D), and there was strong sta-247

tistical evidence that this model could accurately predict responses in held-out test data248

(permutation test p<0.0001). The first component of the model negatively loaded on base-249

line happiness (loading = -0.185, BCa bootstrapped 95% CI = [-0.217, -0.135]), confidence250

(loading = -0.112, BCa bootstrapped 95% CI = [-0.157, -0.049]), and engagement (loading =251

-0.131, BCa bootstrapped 95% CI = [-0.171, -0.068]) (Figure 2F). It also positively loaded on252

each of the transdiagnostic symptom factors: anxiety/depression (loading = 0.660, BCa boot-253

strapped 95% CI = [0.608, 0.733]), compulsive behaviour (loading = 0.491, BCa bootstrapped254

95% CI = [0.415, 0.545]), and social withdrawal (loading = 0.577, BCa bootstrapped 95% CI =255

[0.529, 0.623]). The other two components did not show this pattern (Figure 2E). There was256

strong evidence that the first component’s loading was higher for anxiety/depression than257

both compulsive behaviour and social withdrawal (component 1 loading difference [BCa258

bootstrapped 95% CI] = 0.169 [0.083, 0.299] and 0.083 [0.037, 0.152] respectively; Figure 2G).259
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Figure 2: Associations between affect parameters and transdiagnostic mental health dimensions, and results
of PLS regression. A-C. Estimated differences in baseline affect (wp

0 ; i) or drift in affect over time (wp
1 ; ii) for

a unit increase in anxiety/depression (A), compulsive behaviour (B), or social withdrawal (C) transdiagnostic
symptom factor score. D-G. Results of partial least squares regression: elbow plot of ten-fold cross-validated
mean squared error for models with increasing numbers of components (D); loadings of the three-factor model
on independent (E) and response (F) variables; and loading differences between anxiety/depression and other
transdiagnostic factors (G). Boxplot boxes in A-C denote 95% HDIs and lines denote 99% HDIs; error bars in
E-G denote BCa bootstrapped 95% CIs.
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3.4 Cognitive distancing slows affective drift and antidepressant use positively modu-

lates baseline affect

We then assessed the evidence for effects of cognitive distancing and antidepressant use on260

choice-independent affective dynamics: baseline affect and its drift.261

Previously, in the same sample, we reported evidence from linear mixed models that262

participants practising cognitive distancing declined slightly less in happiness and engage-263

ment, but not confidence, over the course of the task34. Evidence from our RL-affect model264

was consistent with a decrease in affect drift over time: distancing individuals on average265

drifted less across the task in happiness (estimated mean 21.3% higher odds of increase in266

happiness over per hour; 95% HDI for multiplier = [1.01, 1.46]; Figure 3Aii), in spite of lower267

baseline engagement (estimated mean = -2.89 points; 95% HDI = [-5.42, -0.464]; Figure 3Ai).268

There was also some weak evidence of less drift in engagement in participants randomised269

to the intervention (17.4% higher wengaged
1 in distancing individuals; 95% HDI for multiplier270

= [0.91, 1.52]; Figure 3Aii).271

There was limited evidence for any difference in affective drift in participants taking272

antidepressants (Figure 3Bii). However, there was evidence that participants self-reporting273

current antidepressant use had 3.50-point higher baseline happiness (95% HDI = [0.311,274

6.60]) and 2.69-point higher baseline confidence (with much weaker evidence: 95% HDI275

= [-1.16, 6.54]), after adjusting for anxiety/depression symptom scores (Figure 3Bi).276

3.5 Cognitive distancing and antidepressant use have opposite effects on the weighting

of choices in subjective happiness

Next, we quantified the associations between treatments—cognitive distancing and antide-277

pressant use—and choice-dependent parameters (i.e., wp
2 and wp

3) which control the extent278

of trial-to-trial fluctuations in affect.279

There was limited evidence for an association between either treatment and weights280

on recent prediction errors (wp
3; Figure 3Aiv & Figure 3Biv). However, there was some281

evidence that cognitive distancing lowered weighting of recent expected (choice) values in282

happiness ratings (Figure 3Aiii), with 1.83% (95% HDI for multiplier=[0.961, 1.003]) lower283
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Figure 3: Associations between treatments and affect model parameters. A-B. Estimated mean differences in
individuals’ baseline affect (wp

0), drift in affect over time (wp
1) and forgetting rate of previous trials’ expected

values and prediction errors (γp), in participants practicing cognitive distancing (A) and taking antidepressants
(B; darker colour denotes adjustment for current anxiety/depression symptoms). C. Interactions between
cognitive distancing (i) and antidepressant use (ii) and higher anxiety/depression symptom scores, with
respect to baseline affect. D. Associations between antidepressant use and expected value weights in affect
rating computation: main effect (i), interaction with trial lag (ii), and posterior mean parameters for weighting
of previous choices’ expected values in engagement ratings (wp

2(−t′)
) by antidepressant group (iii). In all plots,

boxplot boxes denote 95% HDIs, and lines denote 99% HDIs.
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odds of increased happiness ratings for the same weighted sum of recent expected values in284

distanced participants. Meanwhile, exploratory analyses with an extended between-rating285

model showed a specific effect of antidepressant use on the weighting of recent expected286

values in engagement and confidence ratings (see Supplementary Results & Figure S4Biii-287

iv).288

Current antidepressant use was associated with less forgetting of choices and outcomes289

in happiness ratings (12.5% higher γhappy; 95% HDI for multiplier = [1.04, 1.21]) and engage-290

ment (6.52% higher γengaged; 95% HDI for multiplier = [1.01, 1.13]); Figure 3Biii), suggesting291

higher weighting of earlier trials’ expected values and prediction errors in subsequent affect292

ratings. Evidence for this association remained, albeit slightly weakened, after additionally293

adjusting for current anxiety/depression symptoms (Figure 3Biii), which were themselves294

positively associated with γhappy and (to a lesser extent) γengaged (Figure S3Aiii). Notably,295

the converse effect was seen in distancing participants, with the psychological intervention296

associated with lower happiness forgetting factors, albeit with weak evidence (4.69% lower297

γhappy; 95% HDI for multiplier = [0.906, 1.004]; Figure 3Aiii).298

3.6 Cognitive distancing and antidepressant use dampen negative associations between

baseline affect and anxiety/depression symptoms

Lastly, we explored whether the negative associations between choice-independent affective299

dynamics and transdiagnostic anxiety/depression symptoms were altered by cognitive dis-300

tancing or current antidepressant use, by including treatment by symptom interactions in301

outcome GLMs.302

We found that both the distancing intervention and antidepressant use weakened the303

negative associations between baseline happiness and confidence, but not engagement. Specif-304

ically, distancing individuals with higher anxiety/depression scores had higher baseline305

happiness and confidence (mean 1.37-point higher whappy
0 and 1.79-point higher wconfident

0306

per SD increase in anxiety/depression score respectively) relative to non-distancing par-307

ticipants with the same symptom scores, though with weak evidence (95% HDIs for this308

distancing by symptom interaction = [-0.63, 3.46] for baseline happiness and [-1.11, 6.12]309

for confidence (Figure 3Ci). These effects were mirrored in participants taking antidepres-310
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sants. The evidence for an antidepressant by anxiety/depression symptom interaction with311

respect to baseline happiness was fairly weak (1.86-point higher whappy
0 per SD increase in312

anxiety/depression score; 95% HDI = [-1.52, 5.27]), but the evidence for the corresponding313

interaction effect on baseline confidence was stronger (mean 4.59-point higher wconfident
0 per314

SD increase in anxiety/depression score; 95% HDI = [0.559, 12.53]; Figure 3Cii).315
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4 Discussion

Here, we applied a computational model of momentary happiness which assumes fluctu-316

ations in affect ratings depend simply on baseline affect, its drift over time, and recency-317

decayed expected and received outcomes. By extending this model to also capture learn-318

ing, we were able to link objective behaviour to subjective feelings across distinct affective319

states—happiness, confidence, and engagement ratings—and show that a a core component320

of psychological therapy, cognitive distancing, and antidepressant medication use have dif-321

ferent effects on affective dynamics, but converge to alter affective biases associated with322

symptoms of mental ill-health.323

There were distinct effects of both treatments on affective dynamics. Randomisation to a324

psychotherapeutic intervention, cognitive distancing, attenuated declines in happiness and325

engagement over time, adding to our previously reported findings that this psychothera-326

peutic technique alters aspects of reward learning34. Self-reported antidepressant use, mean-327

while, was associated with higher baseline happiness and confidence after adjustment for328

current anxiety/depression symptoms (as antidepressant use was not randomised), which329

is consistent with evidence that antidepressants exert positive affective biases28. Subse-330

quent exploration of changes in affect revealed further mechanistic divergence: current331

antidepressant use was associated with lower recency biases across all scales (i.e., forgetting332

factors closer to one), and cognitive distancing reduced the weighting of expectations and333

higher recency bias in happiness ratings. Together, these results suggest that psychiatric334

treatments act to alter the contribution of objective learning-related quantities to subjective335

value judgements.336

Consistent with extensive evidence14,18,19,26, we found negative associations between model-337

derived baseline affect (across all scales) and transdiagnostic psychiatric symptom measures338

derived from computational factor modelling36,37. This effect, which was strongest for anx-339

iety/depression symptom scores, indicates a consistent, time-invariant negative affective340

bias which scales with mental ill-health symptom load. Critically, we found evidence for a341

convergent treatment by symptom interaction with baseline affect across both cognitive dis-342

tancing and antidepressant use: negative associations between anxiety/depression symp-343
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toms and baseline happiness and confidence were attenuated in participants with higher344

anxiety/depression symptom scores. These results support the cognitive neuropsychologi-345

cal model of antidepressant action, whereby antidepressants are proposed to act acutely to346

revert negative or maladaptive affective biases29,52, and suggest that cognitive distancing31347

and other components of psychotherapy may also act clinically to alter affective biases348

contributing to symptoms of mental ill-health. We propose that changes in affective dy-349

namics should be investigated further in longitudinal studies as a computational predictor350

of subsequent symptom change.351

Our methodological approach also extends previous work in two ways. First, we ap-352

plied a theory-driven computational model which allows for fluctuations in momentary353

happiness as a function of the history of expected values and prediction errors resulting354

from those expectations, which has been primarily validated in tasks where learning is355

not required5. We not only show that this model can capture happiness ratings in a task356

where expected values are never explicitly available and have to be learned from expe-357

rience, but can also accurately capture variation in subjective ratings of confidence and358

engagement. Second, we found evidence for drift in happiness over time, replicating recent359

work which characterised ‘mood drift over time’44, and extended this to both confidence360

and engagement. We also found that this drift was strongly associated with self-reported361

fatigue (Figure S5; see Supplementary Results for more details). We note that we did not362

find evidence of a previously reported effect—reduced mood drift over time with increased363

depressive symptoms44—instead finding evidence to the contrary (Figure 1Aii). However,364

this work primarily reported evidence from short gambling tasks44; our results indicate that365

associations between affective drift and mental ill-health symptoms are not task-invariant.366

We note several limitations. Firstly, there were limitations in our outcome measures.367

Transdiagnostic measures of mental health psychopathology were estimated using ques-368

tionnaire subsets34,39, precluding investigation of associations between parameters and indi-369

vidual diagnostic scales. Antidepressant use, meanwhile, was self-reported, non-randomised,370

and we did not collect information concerning length of treatment. Secondly, our use of a371

single computational model for all three affect scales is a powerful approach, but limited372

in its ability to truly contrast trial-to-trial fluctuations in each individual rating scale, as373
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we are only comparing the contribution of a small number of computational components374

(i.e., affective weights) to a fraction of their variation; the residual (scale-specific) varia-375

tion is likely also important in explaining how these ratings overlap and differ. Third, as376

model complexity meant only approximate (mean-field variational, rather than sampling-377

based) inference was viable, we were unable to account for uncertainty in estimates of378

individual-level posterior mean parameters in associations with quantities of interest (e.g.,379

by using precision-weighted GLMs), as the posterior covariance matrix cannot accurately380

capture local interdependencies, meaning that parameter precisions are not reliable enough381

for uncertainty-weighted outcome models45.382

To conclude, we integrated objective choice behaviour in a learning task with trial-to-383

trial affect ratings across three distinct states—happiness, confidence, and engagement—384

within a unified computational model. This enabled us to uncover associations between385

model parameters and treatments for mental health conditions, offering new insights into386

their underlying mechanisms-of-action. Our results demonstrate the critical importance of387

affective biases in the maintenance and updating of affective states in mental ill-health, and388

indicate that existing, effective treatments can be understood at least in part as acting to shift389

these biases towards the healthy range.390
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Supplementary Methods

Interpretation of model-derived parameters

In the Results, we report intercept (i.e., baseline affect) parameters (wp
0) following an inverse

logit transformation to allow interpretation of the GLM coefficient on the original (point)

scale (from 0 to 1) as the difference in baseline affect rating between individuals differing

only in the covariate of interest (by one unit). Other GLM-estimated weight parameter

differences are interpreted as the difference in the (log) odds of an increase in affect rating

between individuals differing only in the covariate that the parameter weights.

For intuition, consider an estimated GLM coefficient of 0.1 for the distancing group in

relation to baseline happiness (whappy
0 ) inverse logit transformed to a 0 to 1 scale. This

result indicates an estimated 10-point (on the 0-100 scale) higher baseline happiness rating

in distanced participants after covariate adjustment. Meanwhile, a GLM coefficient for the

distancing group of 0.1 in relation to whappy
1 for the time elapsed (overall) model (i.e., where

whappy
1 is the adjusted log odds ratio for an increase in happiness for a one hour increase in

elapsed time) suggests that the distanced group were 10.5% more likely than non-distanced

participants to have an increase in happiness after an hour (i.e., the estimated multiplier is

exp(0.1) = 1.105)b. Similarly, a GLM coefficient for the distancing group of 0.1 in relation to

whappy
2 suggests that a unit increase in Q-value is 10.5% more likely to produce an increase in

happiness rating, suggesting a higher contribution of (recent) expected values in the affect

rating computation.

Between-rating RL-affect model

Model definition and fit

In an exploratory analysis, we modified (6) to partition the weights on expected values and

prediction errors (wp
2 and wp

3) into individual weights on the outcomes of each previous trial

since the previous rating (in our task, this could be up to four intervening outcomes plus the

current trial). As such, the lagged trial weight parameters wp
2(−t′)

and wp
3(−t′)

can be seen as

bNote the exact interpretation (i.e., greater increase vs. slower decline in odds) depends on the GLM intercept term, which
in this case would be the estimated whappy

1 in non-distanced participants after covariate adjustment.
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capturing the between-rating change in affective dynamics. We hence modify (6) as follows,

log

(
µ
(i)
t

1− µ
(i)
t

)
= wp

0 +wp
1 τt+

I∑
t′=0

wp
2(−t′)

Qt−t′(st−t′ , at−t′)+
I∑

t′=0

wp
3(−t′)

[rt−t′ −Qt−t′(st−t′ , at−t′)],

(7)

where I denotes the number of ratings between the current rating and the last rating of the

same type; in this task, I ≤ 4. wp
k(−t′)

are the weights on the outcomes t′ trials back, so wp
k(0)

is the weight on the outcome of the current trial, wp
k(−1)

is the weight on the outcome of the

previous trial, and so on. This model was fit to choices and ratings on all three affect scales

simultaneously in a hierarchical Bayesian manner via ADVI45 as explained in Methods. The

only difference was that lagged trial weights were assumed drawn from wp
2 and wp

3 priors

specific to each individual which in turn were drawn from overall group-level hyperpriors

(i.e., a three-level hierarchy).

Associations between between-rating RL-affect model parameters and treatments

The associations between the weights on expected values and prediction errors for individ-

ual trials and cognitive distancing and antidepressant use were quantified using multilevel

Bayesian linear regression models implemented in the brms R package53 and CmdStan46.

All models controlled for the same covariates (i.e., age, gender, digit span), but also included

a participant-level random intercept and slopes (on trial lag) to account for the fact there

were five parameters per person for each affect rating, as well as the main effect of trial lag

and its interaction with each treatment. Separate models were fit for each affect rating and

parameter (i.e., w2(−t′)
and w3(−t′)

).

Parameter recovery

Joint RL-affect model with mood drift over time

To test whether we could recover known parameter values from the best-fitting model (i.e.,

dual learning rate, time elapsed over time), we simulated one hundred datasets (including

choices and affect ratings) with parameters drawn from the following distributions:

We then fit the model to these simulated data with approximate inference, and compared

the posterior mean parameter estimated to those known to have generated the data. We
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Parameter Distribution

αreward, αloss Beta(1.5, 3)

0.1β† Beta(3, 4)

wp
0 Normal(0, 0.5)

wp
1 Normal(−0.5, 1)

wp
2, w

p
3 Normal(0.2, 0.1)

γp Beta(2, 2)

Table S1: Parameter distributions used to simulate data and test parameter recovery. †i.e., so β ∈ [0, 10]

found that all parameters could be recovered with high accuracy (r >0.87; Figure S1A).

Figure S1: Parameter recovery for A) the joint RL-affect model, and B) the between-rating RL-affect model.

Between-rating RL-affect model

Parameter recovery for the between-rating RL-affect model was tested similarly, with one

hundred simulated datasets. The parameter settings were identical to the above except for

the time-dependent parameters (and the absence of γp in the model). Specifically, wp
2(−t′)

and
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wp
3(−t′)

were sampled from Beta(1, j) distributions, where t′ is the trial lag, so that weights

for earlier trials were weighted (on average) lower, as we see in the real dataset. Again, even

with the high complexity of the model, we found that all parameters could be recovered

with reasonably high accuracy (r >0.77; Figure S1B).

Comparison between results from models fit to choices alone (with sampling-based in-

ference) vs. in the joint RL-affect model (with variational inference)

We previously reported results in this dataset where we fit Q-learning models to choices

alone and compared parameters in distanced and non-distanced participants34.

Figure S2: Comparison of Q-learning parameters and effects of distancing between dual learning rate models
fit to choices alone and the joint RL-affect model additionally fit to affect ratings.

Besides the obvious difference—that the models were fit to choices alone as opposed

to both choices and affect ratings—the models in our previous work34 were fit to data via

sampling-based inference (MCMC), as opposed to variational inference (ADVI47). However,

despite these differences, we find that individuals’ posterior mean Q-learning parameters

from (i) dual learning rate models fit to choices alone with MCMC, and (ii) the best-fitting
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joint RL-affect model fit choices and affect ratings simultaneously with ADVI are highly

correlated with those we previously reported from Q-learning models fit to choices alone34

in the same sample (αreward: r=0.61 [95% CI = (0.57, 0.65)]; αloss: r=0.67 [95% CI: 0.63, 0.70];

β: r = 0.74 [95% CI = (0.70, 0.76)]; Figure S2A). We also replicate a key result from our earlier

work: higher inverse temperatures (β) in the distancing group (Figure S2B-C).
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Supplementary Results

Group-level parameter estimates for the best-fitting joint RL-affect model

At the group-level, model-predicted baseline affect (wp
0) was highest for engagement (group-

level mean = 65.9 points; 95% HDI = [65.9, 66.0]), followed by happiness (group-level mean

= 56.5, 95% HDI = [56.4, 56.6]), and lowest for confidence (group-level mean = 32.2, 95% HDI

= [32.1, 32.2]). Affect drift over time (wp
0) was steepest for engagement: an estimated 81.2%

lower odds of increased engagement per hour (all other terms being equal; 95% HDI for

multiplier = [0.187, 0.189]), compared to 54.1% lower confidence (95% HDI for multiplier =

[0.457, 0.462]) and 37.7% lower happiness (95% HDI for multiplier = [0.620, 0.625]) per hour.

Group-level means for weights on recent expected values (wp
2) and prediction errors (wp

3)

were positive for all three ratings, showing higher affect with increased recent rewards, and

were lowest for engagement (posterior mean [95% HDI] for multiplier: whappy
2 = 1.200 [1.198,

1.201], wconfident
2 = 1.216 [1.216, 1.218], wengaged

2 = 1.116 [1.114, 1.116]; whappy
3 = 1.136 [1.134,

1.136], wconfident
3 = 1.208 [1.207, 1.210], wengaged

3 = 1.109 [1.108, 1.109]). Lastly, the average

decay factor was highest for confidence (group-level mean = 0.563; 95% HDI = [0.561, 0.565]),

and lowest for happiness (group-level mean=0.407; 95% HDI = [0.405, 0.409]), suggesting

higher weighting of outcomes of earlier trials (i.e., prior to the most recent trial) in confidence

judgements compared to happiness ratings.

Compulsive behaviour and social withdrawal factor scores are also associated with al-

tered affective dynamics

In addition to differences in baseline affect and its drift over time detailed in the main

text, there was evidence that participants with higher compulsive behaviour scores placed

more weight on recent expected values (higher wp
2; 95% HDI excluding zero for whappy

2 only)

and prediction errors (higher wp
3) in their subjective affect judgements (Figure S3i-iii). The

consequences of this were evident in the observed data. For example, there was evidence of

a weak positive correlation between happiness rating variability and compulsive behaviour

factor scores (correlation coefficient [95% CI] r = 0.15 [0.086, 0.212], p < 0.0001; Figure S3D),

which can also be qualitatively observed by comparing mean-centred happiness ratings for

participants in the bottom quartile versus the upper quartile of compulsive behaviour factor
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scores (Figure S3E). That said, the actual effect of the estimated differences in whappy
2 and

whappy
3 on ratings is small, as shown by simulating happiness ratings for individuals who

differ only in having the estimated whappy
2 and whappy

3 for those with the 25th percentile versus

the 75th percentile compulsive behaviour factor score (Figure S3E).
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Figure S3: Associations between higher transdiagnostic psychiatric symptom factor scores and additional
affect parameters (A-C), correlation between variance in happiness rating and compulsive behaviour score
(D), and the simulated effect on happiness ratings of higher whappy

2 and whappy
3 (E-F).
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We additionally found some weak evidence that increases in anxiety/depression fac-

tor were associated with slightly higher weighting of previous trials’ expected values and

prediction errors for happiness (γhappy; e.g., trial-before-last weighted an estimated 4.04%

higher; 95% HDI for multiplier = [1.003, 1.079]; Figure S3Aiii). There was also some stronger

evidence for a positive association between social withdrawal factor score and decay factors

for happiness and engagement (Figure S3Ciii), suggesting marginally higher weighting of

previous trials’ expected values and prediction errors in the computation of affect ratings in

those with higher levels social withdrawal symptoms.

Antidepressant use is associated with increased weighting of previous choices’ expected

values in affect ratings

To further unpick the effects of treatments on the weighting of previous outcomes, we fit a

more flexible between-rating RL-affect model (equation 7). This model, which allowed for

different weights on previous expected values (wp
2(−t′)

) and prediction errors (wp
3(−t′)

) since

the previous rating (up to five trials back), was able to capture the ratings well, albeit with

marginally worse accuracy than the winning drift over time model (mean [SD] pseudo-

R2 for between-rating RL-affect model = 0.39 [0.22-0.25] across all three ratings). We then

related wp
2(−t′)

and wp
3(−t′)

from each rating type separately to both treatments via multilevel

GLMs with participant-level random intercepts and slopes (on trial lag), adjusting for age,

gender, and digit span as before.

Parameters from this between-rating model suggested limited evidence for a difference

between distancing and non-distancing participants in the weighting of the most recent or

intervening outcomes in their affective judgements (Figure S4A). There was also no evi-

dence of an effect of either treatment on weightings of prediction errors from previous trials

(Figure S4Aiii-iv & Figure S4Biii-iv). There was, however, some evidence of a small effect

of antidepressant use on between-rating changes in affect: higher weighting of the most

recent expected value in subjective affect ratings (Figure S4Bi). The evidence for this was

strongest for engagement, with a unit increase in the most recent Q-value associated with

4.33% higher odds of an increase in engagement rating (95% HDI for multiplier = [1.001,

1.089]). Furthermore, there was limited evidence of an accompanying interaction effect
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Figure S4: Effects of cognitive distancing (A) and antidepressant use (B) on expected value and prediction error
parameters, derived from the between-rating RL-affect model.

(Figure S4Bii), suggesting the contribution of less recent expected values to engagement

ratings was also marginally higher in participants taking antidepressants, which may in

turn explain the higher forgetting factor γengaged (Figure 3Bv).
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Affective drift over time is associated with self-reported fatigue

Previous work on ‘mood drift over time’ has suggested it is mostly distinct from boredom

and mind wandering44. Here, were able to test an additional aspect of this phenomenon,

namely its relation to fatigue, as we asked participants the following question after the end

of each of the six blocks: “How fatigued do you feel compared to the beginning of the

block?”. We hence examined the association between wp
1 and both participants’ overall mean

post-block fatigue and their change in post-block fatigue ratings over the course of the six

training blocks. To quantify change in post-block fatigue, the six ratings were regressed on

block number for each participant, with the regression coefficient (β∆fatigue) on block number

taken as the quantity of interest (i.e., higher values suggest increases in post-block fatigue

ratings over time).

Figure S5: Associations between baseline affect and affective drift, and self-reported fatigue.

We found strong evidence, after adjusting for age, gender, digit span, and distancing

group, that higher mean post-block fatigue ratings were associated with lower baseline

affect (lower wp
0; Figure S5Ai) and decreased odds of higher affect ratings across the task

(lower wp
1; Figure S5Aii), across all three affect rating types (e.g., estimated mean 18.9% lower

odds of increased happiness across the task with a ten-point increase in mean post-block fa-
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tigue; 95% HDI for multiplier = [0.767, 0.856]). In addition, regression coefficients capturing

change in post-block fatigue were strongly negatively associated with wp
1 across all rating

types after adjusting for mean post-block fatigue, most strongly for engagement (estimated

mean 5.74% lower odds of increase in engagement for a one-point per block in fatigue rating

rate-of-change, 95% HDI for multiplier = [0.944, 0.968]; Figure S5Bii). Notably, associations

in the opposite (positive) direction were observed between β∆fatigue and baseline affect,

again most strongly for engagement (estimated 0.714-point increase in engagement rating

for a one-point per block increase in fatigue rating rate-of-change; 95% HDI = [0.452, 0.975];

Figure S5Bi). Speculatively, this may represent an effect of motivation, where participants

who were more engaged towards the beginning of the task also exerted more effort, resulting

in larger overall increases in fatigue and decreases in engagement.
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